

Review

Regulating Immune Responses Induced by PEGylated Messenger RNA–Lipid Nanoparticle Vaccine

Hyein Jo, Jaewhoon Jeoung, Wonho Kim and Dooil Jeoung ^{*}

Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; qnfdudn1212@gmail.com (H.J.); heyjhw@kangwon.ac.kr (J.J.); kimwonho99@kangwon.ac.kr (W.K.)

* Correspondence: jeoungd@kangwon.ac.kr

Abstract: Messenger RNA (mRNA)-based therapeutics have shown remarkable progress in the treatment and prevention of diseases. Lipid nanoparticles (LNPs) have shown great successes in delivering mRNAs. After an mRNA-LNP vaccine enters a cell via an endosome, mRNA is translated into an antigen, which can activate adaptive immunity. mRNAs can bind to various pattern recognition receptors (PRRs), including toll-like receptors (TLRs), and increase the production of inflammatory cytokines. This review summarizes mechanisms of innate immunity induced by mRNAs. Polyethylene glycol (PEG) has been employed as a component of the mRNA-LNP vaccine. PEGylated nanoparticles display enhanced stability by preventing aggregation of particles. However, PEGylation can cause adverse reactions, including blood clearance (ABC) of nanoparticles via complement activation and anaphylaxis. Mechanisms of PEG-induced ABC phenomenon and anaphylaxis are presented and discussed. There have been studies aimed at reducing immune responses associated with PEG to make safe and effective vaccines. Effects of modifying or replacing PEG in reducing immune responses associated with PEGylated nanoparticles are also discussed. Modifying mRNA can induce immune tolerance, which can prevent hypersensitivity reactions induced by PEGylated mRNA-LNP vaccines. Current progress of immune tolerance induction in association with mRNA-LNP is also summarized. This review might be helpful for developing safe and effective PEGylated mRNA-LNP vaccines.

Academic Editors: Eduardo Gomez-Casado and Sohrab Ahmadvand

Received: 27 November 2024

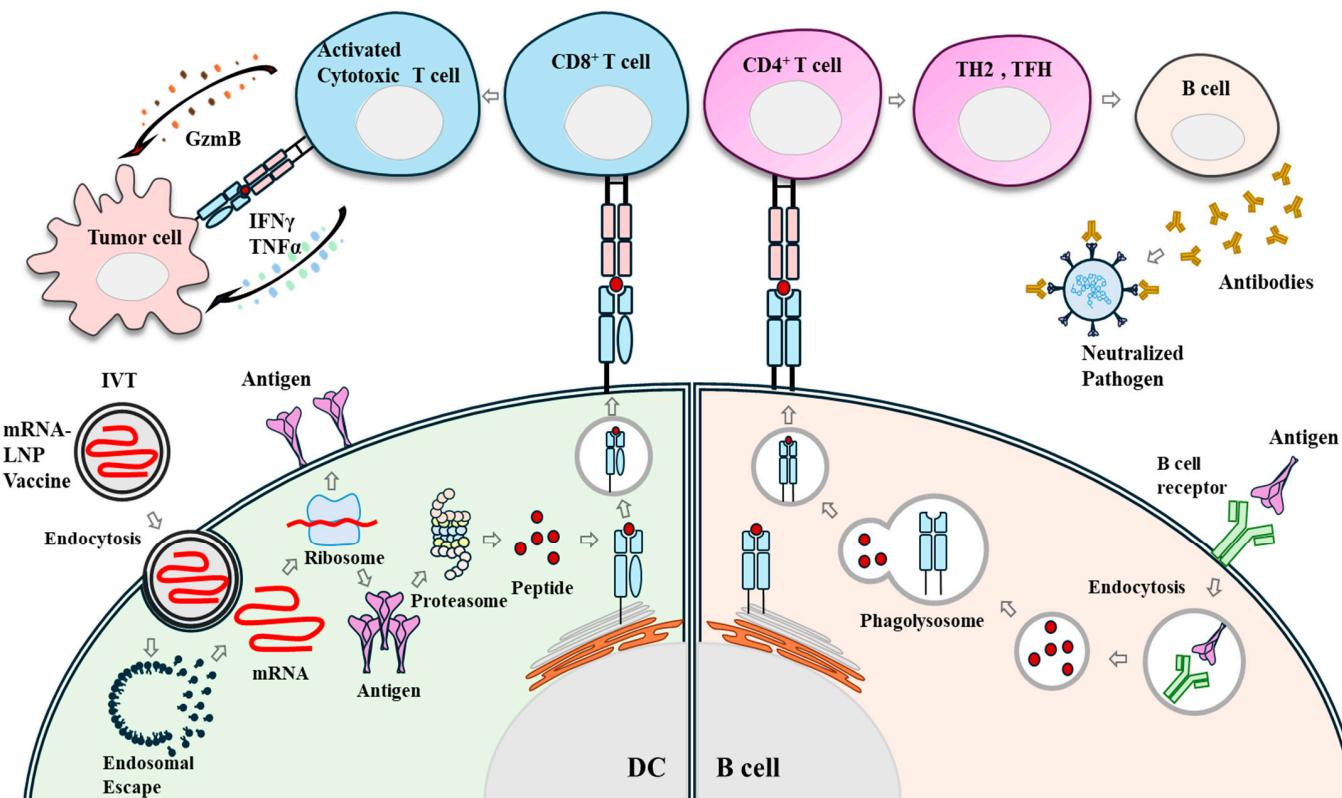
Revised: 20 December 2024

Accepted: 23 December 2024

Published: 27 December 2024

Citation: Jo, H.; Jeoung, J.; Kim, W.; Jeoung, D. Regulating Immune Responses Induced by PEGylated Messenger RNA–Lipid Nanoparticle Vaccine. *Vaccines* **2025**, *13*, 14. <https://doi.org/10.3390/vaccines13010014>

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).


1. Immune Response Induced by mRNA Vaccines: Antigen Translation

Messenger RNA (mRNA) has been widely applied in therapies, including protein replacement therapies and cancer immunotherapies [1–3]. Successful development of COVID-19 vaccines has greatly contributed to the advancement of mRNA technology.

mRNA can be produced by in vitro transcription (IVT). It can then be translated into functional proteins. mRNA vaccines make it possible to mount an immune response without ever exposing to pathogens. mRNA vaccines show various advantages, including rapid preparation, reduced contamination, no induction of insertional mutagenesis, and high biodegradability [4]. These advantages make it possible to develop mRNA-based personalized vaccines. mRNAs have shown translational efficiency, reliable stability, and controlled immunogenicity [5]. It has been shown that mRNAs can bind to receptors and signaling pathways such as toll-like receptors (TLRs) and the JAK-STAT pathway and promote adaptive immune response [6]. Induction of adaptive immunity involves activation of T cells and the generation of specific antibodies.

Non-replicating mRNA (NRM) and virally generated, self-amplifying RNA (SAM) are now being investigated as vaccines. SAMs encoding a viral replication machinery allow for abundant production of antigen of interest [7]. mRNA structures include 5' and 3' untranslated structure regions (UTRs) [8]. 5' UTR can be optimized to enhance translational efficiency [9]. Replacing ORF coding for viral structure proteins with viral RNA-dependent RNA polymerase can result in cytoplasmic expansion of the replicon structure. Refining 5' cap structure, 3' poly (A) tail, and codons can enhance the stability of mRNA [10,11].

mRNA vaccines encoding proteins of interest can be introduced into the cytoplasm of host cells, where they can be expressed into antigens [12]. Internalization of mRNA by antigen-presenting cells (APCs) can be made easier by performing nucleotide modifications and codon optimizations [5]. A single vaccination of mRNA can produce many antigens and induce major histocompatibility complex (MHC)-mediated T cell responses and production of neutralizing antibodies [13]. APCs can internalize the mRNA vaccine via endocytosis. mRNAs can escape endosomes and access the cytoplasm for translation into proteins of interest. The proteasome complex can break down intracellular proteins into antigenic peptides. Antigenic peptides are presented to CD4⁺ T cells or CD8⁺ T cells via MHC molecules on surfaces of APCs. Antigenic peptides can induce differentiation of CD4⁺ T cells into effector T cells, including T helper (TH) cells and T follicular helper (TFH) cells. TFH cells can promote germinal center reactions to induce the production of neutralizing antibodies. Activated CD8⁺ T cells by MHC-I/Peptide can exert cytotoxic effects. mRNAs can produce extracellular or cell surface proteins that can be recognized by cognate B cells and induce the production of neutralizing antibodies. Targeted delivery and endosomal escape remain challenging issues for developing mRNA-based therapy. Figure 1 shows that proteins encoded by mRNA can induce both innate immunity and adaptive immunity.

Figure 1. Immune responses induced by mRNA vaccines. mRNA-LNP vaccine is endocytosed by antigen presenting cells. Following endosomal escape, mRNAs are then translated into corresponding

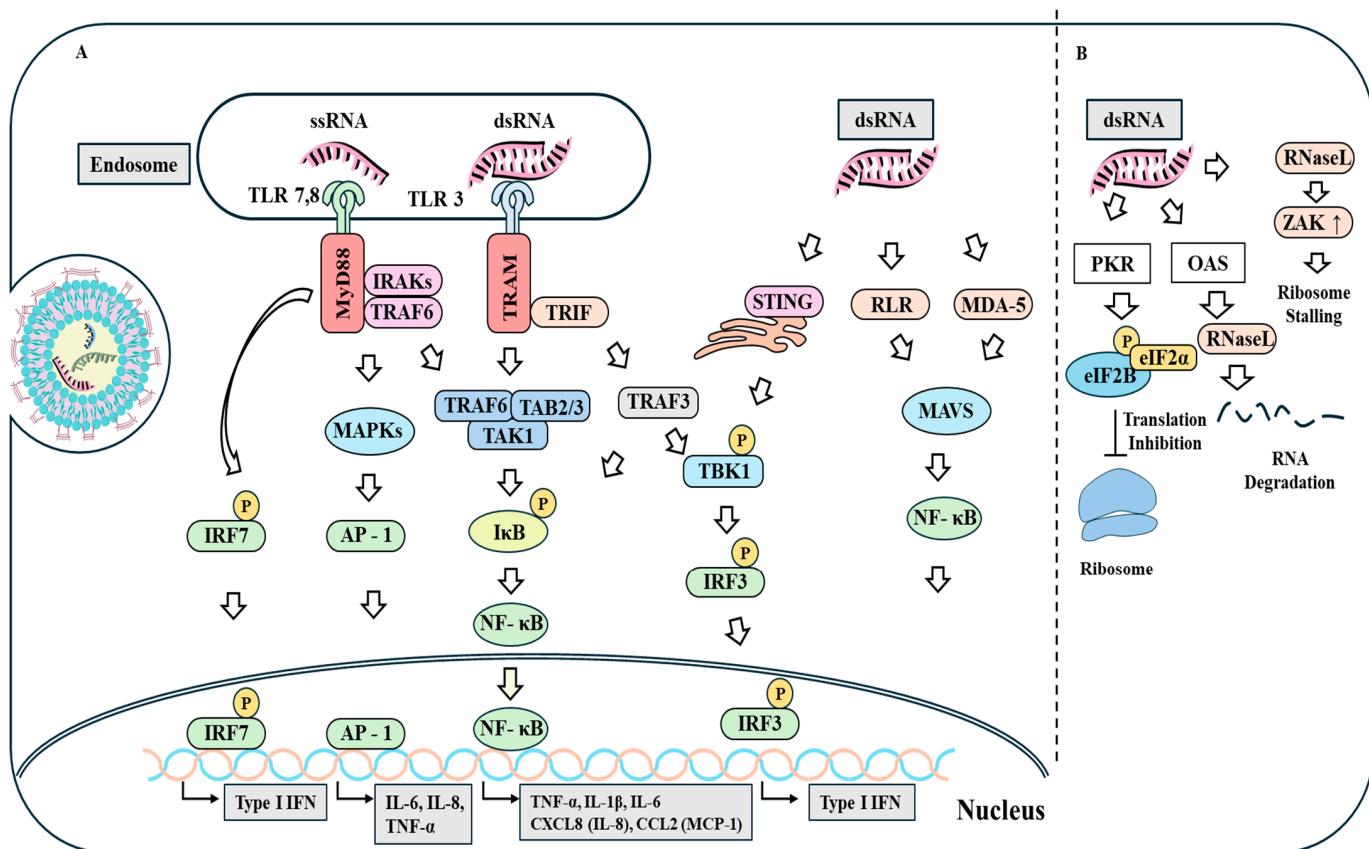
proteins. Proteins undergo proteasomal degradation. Peptides are then presented on MHC-I to induce activation of CD8⁺ T cells. Activated CD8⁺ T cells can secrete IFN γ and TNF- α . Activated CD8⁺ T cells can kill tumor cells by granzyme B (GzmB). Secreted proteins are recognized and engulfed by antigen presenting cells such as B cells. Antigenic peptides are presented on the MHC-II of B cells to induce activation of CD4⁺ T cells. Activated CD4⁺ T cells, such as TH2 cells and TFH cells, can activate B cells to induce production of antigen-specific antibodies. Arrows denote the direction of reaction. TFH denotes follicular T helper cells. IVT denotes in vitro transcription.

2. Structure of mRNA-LNPs

Lipid nanoparticles (LNPs), a leading non-viral delivery system, can efficiently co-deliver vaccines and immune adjuvants to lymphoid organs [14]. LNPs have shown successes as delivery vehicles for small molecules such as mRNAs and siRNAs [15,16]. Negative charges and toxicity of RNAs hinder their efficient uptake by host cells. LNP-encapsulation has been employed to generate safe and effective vaccines. LNPs can enhance the stability of messenger RNA and facilitate endosomal escape [17]. Enhanced half-life stability of LNPs can promote an enhanced permeation and retention (EPR) effect that can result in accumulation of LNPs in cancer tissues [18].

LNPs mostly contain four kinds of lipids: (1) cationic or ionizable cationic lipids such as N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA); (2) phospholipids such as dipalmitoylphosphatidylcholine (DPPC); (3) lipid-anchored polyethylene glycol (PEG) such as DMG-PEG2000; and (4) cholesterol [19]. Ionizable liposomes are neutral in the bloodstream. They display minimal off-target interactions with anionic cell membranes of blood cells [20]. In an endosomal environment, ionizable lipids undergo protonation on the liposome surface, which can promote membrane disruption and endosomal escape of mRNA. PEG-lipids can enhance the stability of mRNA-LNP by decreasing particle aggregation without causing changes in mitochondrial metabolism in neuroblastoma cells [21]. Decreasing PEG molarity or replacing PEG structures can increase protein expression by increasing the size of mRNA-LNP [22]. Large nanoparticles that contain more lipids and mRNAs can promote high endosomal escape and provide more mRNA for protein production. PEG molarity might affect innate and/or adaptive immunity by regulating the production of antigenic epitopes after vaccination with an mRNA-LNP vaccine. It is also probable that decreasing PEG molarity can change the physicochemical properties of nanoparticles to affect protein expression.

3. Induction of Immunity by Lipid Nanoparticles


mRNA-LNPs can act as an immune adjuvant based on the following findings: (1) mRNAs can be sensed by Toll-like receptor (TLR), melanoma differentiation-associated protein 5 (MDA5), and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) [23–25]; (2) mRNA-LNPs can increase the production of inflammatory cytokines including IL-1 α , IL-1 β , and IFN- β , and IFN- γ through RNA sensing receptors [26–29]; and (3) mRNA-LNPs can promote adaptive immunity involving activation of T cells and germinal center (GC) B-cell responses [30–32]. BNT162b2 mRNA-LNP vaccine can increase levels of proinflammatory cytokines including IL-2, CCL2, CCL4, and CCL5 [33]. The BNT162b2 mRNA-LNP vaccine can also induce CD8⁺ T cell responses via type I interferon (IFN)-dependent MDA5 signaling [33]. In addition, ionizable lipids can activate the TLR2, TLR4, and NLRP3 inflammasome [34,35]. Cationic or ionizable cationic lipids and PEGylated lipids of the mRNA-LNP-COVID19 vaccine can also induce acute inflammatory syndrome by increasing the secretion of cytokines, including IL-1 α , IFN- γ , IL-1 β , and IL-8 by activating the complement system [34,36,37].

4. Innate RNA Sensing

PRRs are known to mediate innate immune responses [38]. PRRs are expressed on APCs such as monocytes and dendritic cells (DCs) [39]. PRRs include TLRs, leucine-rich repeat-containing receptors (NLRs), and retinoic acid-inducible gene 1 (RIG-I) like receptors [38,40]. TLRs are crucial mediators and regulators of host immunity [34].

Nucleic acids can act as molecular patterns [38]. Sensing IVT mRNA by endosomal TLR7/8 [41] can activate the myeloid differentiation factor (MyD) 88 pathway to initiate type1 IFN pathways [41,42]. TLR7/8 agonist can induce production of type1 IFN and IL-6 and adaptive immune responses [41]. Anticancer mRNA-LNP vaccines can trigger TLR4 [43], TLR7 [44], and can be stimulators of IFN gene 16 (STING16) signaling pathways [45]. RNA sensing by PRRs can also activate the IFN pathway, which in turn can increase the production of proinflammatory cytokines, resulting in the activation of APCs [46]. mRNA sensing by TLRs (TLR3, TLR7, and TLR8) can activate the innate immune system to increase production of proinflammatory cytokines [47]. Endosomal TLRs, specifically TLR3, TLR7, and TLR8, can act as viral RNA PRRs. Single-stranded RNA (ssRNA) can bind to TLR-7 and TLR-8 to activate the MyD88 pathway and induce production of the germinal center B cell-dependent IgG antibody [48]. TLR7 can activate NF- κ B, MyD88, IRF7 pathways and increase secretion of CCL2, CXCL10, IL-1 β , IL-6, IL-8, and type I IFNs [49–51]. TLR-3 can sense double-stranded RNA (dsRNA) and activate the TRIF (TIR-domain containing protein inducing type 1 IFN) pathway while decreasing the expression of adenosine deaminase RNA specific 1 (ADAR1) [52]. TLR-3 can also activate IRF3 and NF- κ B to increase production of proinflammatory cytokines and type I IFN [53]. LNP-poly(I:C) can activate lysosomal TLR3 in human and mouse fibroblasts [54].

Viral infection can activate RNA sensors, including RIG-I-like receptors (RLRs), TLRs, protein kinase R (PKR), and ADAR1 [55]. RLRs can sense cytosolic RNA and act as sensors of the BNT162b2 vaccine [33]. Cytosolic RLRs and MDA5 along with mitochondrial antiviral signaling protein (MAVS) can increase production of proinflammatory cytokine [56,57]. DsRNA can activate MAVS and STING-mediated signaling pathways in response to ionizing radiation [56]. MDA5 and RLR can increase the secretion of proinflammatory cytokines by activating IFN response factor 3 (IRF3) and NF- κ B [57]. Understanding mechanisms of innate immunity mediated by the IFN pathway is needed to develop safe and effective mRNA-LNP vaccines. Figure 2 shows that RNA sensing by innate PRRs can induce production of proinflammatory cytokines.

Figure 2. Innate immunity and translational inhibition induced by mRNA. (A) Endosomal TLR (TLR3, 7, or 8) can bind to ssRNA or dsRNA. Endosomal TLR7/8 can increase the production of type I IFNs and various proinflammatory cytokines including IL-6, CCL2, and CXCL10 by activating MYD88-NF-κB signaling. DsRNA produced during IVT can activate PKR or OAS pathway, resulting in degradation of mRNA. Endosomal TLR3 can bind to dsRNA and activate TRIF pathway. RLRs and MDA5 can bind to cytosolic RNAs and increase production of proinflammatory cytokines by activating IRF3 and N-κB. (B) DsRNA can bind to PKR and OAS. PKR can suppress mRNA translation by inducing phosphorylation of eIF2. OAS can activate RNase L, which in turn can induce translational arrest. Hollow arrows denote the direction of reaction. IRAK, interleukin-1-receptor-associated kinase; MAVS, mitochondrial antiviral-signaling protein; TAB, Mitogen-activated protein kinase kinase kinase 7-interacting protein 1; TAK, mitogen-activated protein kinase kinase kinase 7; TRAF6, tumor necrosis factor receptor-associated factor 6; TRAM, translocating-chain-associated membrane protein; ZAK, mixed lineage kinase. Hollow arrows denote the direction of reaction. T bars denote inhibition of reaction.

5. Translational Inhibition of mRNA by dsRNA

Innate RNA sensors can decrease the expression of antigen from mRNA by activating ribonuclease L (RNase L) that cleaves single stranded RNA (ssRNA) via JNK and p38 MAPK pathways [58]. RNase L can decrease the translation of stress-responsive genes by inducing ribosome stalling through activation of human leucine zipper and sterile alpha motif-containing kinase (ZAK) [58]. Double stranded RNA (dsRNA) produced during IVT can restrict mRNA translation by activating PKR and NF-κB [59,60]. PKR and RIG-1 are known to recognize different types of RNA to interfere with translation [61–63]. PKR can induce phosphorylation of eukaryotic initiation factor 2 (eIF2), which in turn can suppress mRNA translation [63,64].

DsRNA can also trigger innate immunity via oligoadenylate synthetase 3 (OAS) [65]. Upon detecting viral dsRNA, OAS3 can activate RNase L [66], which cleaves both cellular and viral RNAs, further triggering RLR signaling to increase the production of proinflammatory cytokines [67]. RNA-binding protein E3 (E3L) can bind to PKR and inhibit activation of PKR [68]. Thus, E3L can be employed to prevent translational inhibition by dsRNA. This can be used to develop effective mRNA-LNP vaccine. Figure 2 describes the mechanism of RNA degradation by PKR and OAS. To make effective mRNA-LNP vaccines, it is necessary to purify IVT mRNA without dsRNA.

6. Effects of Modifications of mRNAs on Immunogenicity and Translation

mRNA transfection can stimulate TLR3 and TLR7 and induce IFN- β expression in human and mouse fibroblasts [69]. Unmodified mRNA-LNP vaccines can activate innate immune responses that often lead to cytokine storms. Ss RNA 40, a synthetic mimic of SARS-CoV-2 RNA, can increase the expression of proinflammatory cytokines in monocyte-derived dendritic cells (MDDCs) via TLR8 [70]. Inositol requiring enzyme 1 α (IRE1 α) inhibitor MKC8866 can prevent ssRNA40 from increasing the production of proinflammatory cytokines [70]. Thus, the TLR8-IRE1 α system might serve as a target to control the cytokine storm associated with COVID-19 mRNA-LNP vaccines. TLR signaling can activate IRF3 to induce production of proinflammatory cytokines including IFN [71]. DsRNA can increase the expression of IFN stimulated genes (ISGs) by activating IRF3 and NF- κ B [57].

Nucleoside-modified mRNA-LNP vaccines might abrogate innate immunity critical for inducing adaptive immunity. Therefore, it is advisable to modify components of mRNA-LNP vaccines. Post-transcriptional modifications such as RNA pseudouridylation can affect gene expression and regulate various biological processes [72]. Replacing uridine with pseudouridine (Ψ) or other derivatives such as N1-methylpseudouridine (m1 Ψ), 2-thiouridine, 5-methyluridine, and 5-methylcytidine can prevent endosomal TLR3 and TLR7/8 and cytosolic RIG-1 from recognizing mRNAs and increasing the production of IFN- β [69,73]. Thus, modifications of mRNAs can reduce innate immunity induced by mRNA-LNP vaccines. RNA-editing enzyme ADAR1 (adenosine deaminase acting on RNA) can inhibit immune checkpoint blocker (ICB) responsiveness by suppressing immunogenic dsRNAs arising from dysregulated expression of endogenous retroviral elements (EREs) [74].

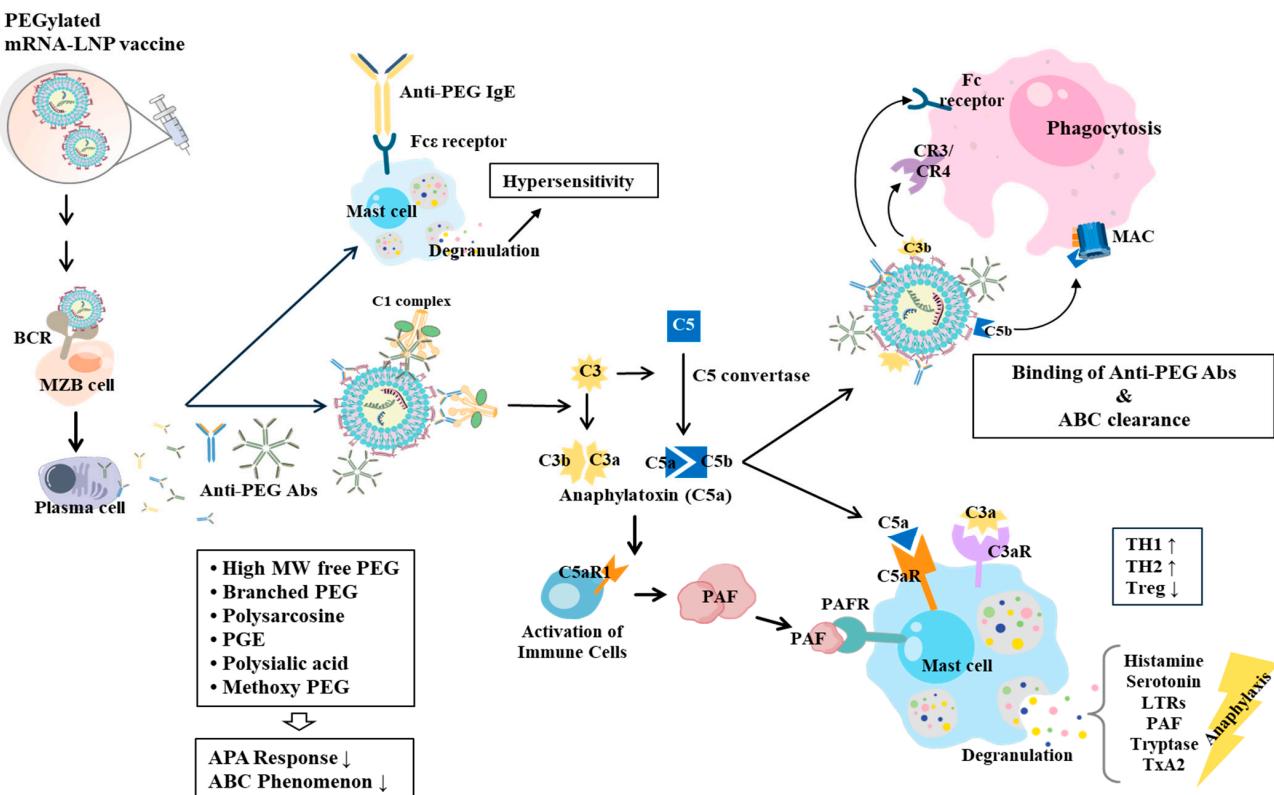
Pseudouridylation of alpha ketoglutarate-dependent dioxygenase (ALKBH3), a tumor suppressor gene, can enhance the translation of ALKBH3 and reduce tumor growth [72]. Chemical modification of nucleotides can enhance translation levels by preventing innate sensors from recognizing IVT mRNA [75,76]. Enhanced protein translation efficiency can be attributed to stability of pseudouridine-modified IVT mRNAs resulting from a reduced activity of RNA-dependent PKR [75,76].

7. PEGylated mRNA-LNPs Cause Hypersensitivity Reactions, Allergies, and Complement Activation-Related Pseudoallergy (CARPA)

Safe and effective vaccines can stimulate the innate immune system and prime adaptive immune responses. However, immune-related adverse effects can arise because of immunological actions induced by these vaccines. Stimulation of RNA sensors such as TLRs can induce cytokine storm, airway infiltration of immune cells, and activation of mast cells [77]. It has been shown that mRNA COVID-19 vaccines can cause allergies [78,79]. COVID-19 can activate mast cell-derived proteases and increase levels of eosinophil-associated mediators based on assays employing sera and lung tissues of COVID-19 patients [77]. The BNT162b2 COVID-19 vaccine can exacerbate asthma by enhancing sensitivity to histamines in a human ex vivo model [80]. Phospholipase A2IIA

activity is correlated with severity of COVID-19 vaccine [81]. The COVID-19 vaccine can increase levels of lysophosphatidic acid (LPA) and platelet activating factor (PAF) by phospholipase A2IIA [81]. It is well known that PAF mediates allergic reactions via the PAF receptor [82].

PEGylated proteins along with complete Freund's adjuvant can induce production of PEG-specific antibodies [83]. PEG displays immunogenicity when it is used as an excipient in LNPs [84]. PEG can cause anaphylaxis in some drug reactions [85]. High molecular weight PEGs are known to cause allergic reactions. In animals, anti-PEG immunity consists of mostly the anti-PEG IgM response. PEGylated mRNA-LNP vaccines can induce the production of anti-PEG IgG, anti-PEG IgM, and anti-PEG IgE [86–88]. COVID-19 mRNA-LNP vaccines (Comirnaty and Spikevax) can induce hypersensitivity reactions (HSRs) or anaphylaxis by increasing levels of anti-PEG IgG/IgM [86]. Anti-PEG antibodies can be produced without prior exposure to PEGylated nanoparticles [89]. Anti-PEG Abs have been shown to be correlated with a reduced clinical efficacy of PEGylated therapeutics due to the presence of anti-PEG antibodies.


Anti-PEG antibodies on the surface of PEGylated nanoparticles can induce HSRs such as hypothermia and hypotension by activating Fc γ receptors on innate immune cells [90]. TLRs play a key role in allergic airway inflammatory responses, including airway infiltration of immune cells, increased levels of Th2 cytokines, and metaplasia of lung epithelial cells [91]. The expression levels of inflammation-related genes are decreased in TLR2 KO cells compared to those in wild type cells [91]. The TLR2-ERK signaling pathway can mediate allergic airway inflammation by regulating expression of Gal-3 [92]. The PEGylated siRNA-lipoplex can increase production of anti-PEG IgM by activating the TLR7 signaling pathway [93]. PEGylated liposomes containing TLR agonists can cause acute HSRs by inducing high levels of the anti-PEG antibody [94]. Thus, TLR signaling pathways might be responsible for the induction of allergic symptoms by PEG-mRNA-LNP vaccines.

People who have high levels of anti-PEG Ab in their blood can develop HSRs/anaphylaxis in response to PEGylated vaccines [95]. PEGylated proteins can induce production of anti-PEG antibody by activating T cells responses, while PEGylated liposomes function in a T cell-independent manner [96]. PEG has been implicated in pseudoallergic or anaphylactoid reactions via complement activation-related pseudoallergy (CARPA) [97]. Several types of anti-PEG antibodies are known to contribute to HSRs and premature drug release from PEGylated carriers [95,98,99]. Comirnaty, a PEGylated mRNA vaccine, can induce production of anti-PEG IgG and anti-PEG IgM antibodies, which in turn can activate the complement system to cause pseudoanaphylaxis [95]. Anti-PEG IgG, but not anti-PEG IgM, can induce symptoms of HSRs including hypothermia, altered lung function, and hypotension after administration of PEGylated liposomal doxorubicin (PLD) in C57BL/6 and non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice [90]. Anti-PEG IgG can cause HSRs through Fc γ receptors independent of complements [90]. Immune cells including basophils, monocytes, neutrophils, and mast cells can mediate anti-PEG IgG-mediated HSRs by recognizing mRNA-LNPs through PRRs such as nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) [100]. This suggests that pathogenesis of allergic diseases involves both innate and adaptive immune responses. Anti-PEG IgE can also mediate HSRs induced by PEGylated nanoparticles [101].

Immunization with the mRNA-LNP COVID-19 vaccine can induce anaphylaxis, like CARPA, following their first or subsequent vaccinations [102,103]. CARPA results from elevated levels of complement C3a and sC5b-C9 [102]. Unlike other IgE-mediated reactions, CARPA can cause anaphylaxis upon first exposure. Allergic inflammations such as asthma involve lectin-dependent activation of the complement system via Fc γ 1 in response to allergens [104,105]. The mRNA-LNP COVID-19 vaccine can activate complements and

increase the production of proinflammatory cytokines including IL-1 α , IL-1 β , IL-6, IL-8, IFN- γ , and TNF- α in PBMC cultures [36]. The COVID-19 vaccine can activate complements in an anti-PEG IgG-dependent manner and induce activation of basophils and M1 polarization of monocytes [78]. Thus, activation of complements caused by the COVID-19 vaccine can increase production of proinflammatory cytokines. PEGylation can reduce clearance of LNPs by mononuclear phagocytic cells by affecting binding of opsonin protein to liposomes [106–109]. In the case of the COVID-19 vaccine, interaction with immune cells can activate the complement system [110]. This implies that the stability of COVID-19 vaccine can be reduced by the complement system. Anti-PEG antibodies can reduce stability of PEGylated nanoparticles [111]. Anti-PEG antibodies can activate complement system by binding to PEG on the surface of PEGylated liposomal doxorubicin (PLD) [112]. Repeated injections of PEG-LNPs can decrease stability of PEG-LNPs [113]. Induction of accelerated blood clearance (ABC) phenomenon by PEG results from anti-PEG IgM produced after the initial injection [113]. Injections of siRNA complexed with PEGylated cationic liposomes (PLpx) can lead to rapid clearance of subsequent doses of PLpx by inducing production of anti-PEG IgM from peritoneal PEG-specific B cells [114]. Anti-PEG IgG and IgM are responsible for loss of efficacy of mRNA-LNP vaccines by inducing ABC phenomenon [115]. LNPs can activate splenic marginal zone B (MZB) cells to induce production of anti-PEG IgM, which in turn can activate the complement system and lead to the ABC phenomenon. Anti-PEG IgM can destabilize mRNA-LNP by releasing mRNA in a complement-dependent way [116]. Complement fragment C3 produced after activation of complement proteases can bind to complement receptors (CRs) expressed on phagocytes, which in turn can mediate the ABC phenomenon [110,117]. C3 convertase (C4b2a) can promote the cleavage of C3 into C3a and C3b, which can promote phagocytosis [118]. C5 convertase activated by C3 can promote the cleavage of C5 into C5a and C5b, which can promote formation of a membrane attack complex (MAC) to cause phagocytosis [118]. Figure 3 shows that PEGylated mRNA-LNP vaccine can induce production of anti-PEG antibodies, which in turn can promote complement activation to cause the ABC phenomenon.

An activated complement system can induce release of histamine and opsonization of LNPs [110]. This implies that activation of complement may lead to allergic inflammation. Mast cells, eosinophils, basophils, macrophages, plasmacytoid dendritic cells, and neutrophils all express receptors for C3a and C5a [119,120]. Anti-PEG IgM and IgG can induce production of anaphylatoxins C3a and C5a via the classical pathway, which in turn can induce degranulation of mast cells [121,122], smooth muscle contraction, and release of histamine, serotonin, PAF, and cysteinyl leukotrienes (CysLTs) [123,124]. C5a contributes to inflammation through activation of the NLRP3 inflammasome and induction of IL-1 β [125]. C5a-C5aR signaling can increase numbers of Th1 and Th2 cells while decreasing the number of Treg cells in a mouse model of asthma [126]. C5 can prevent the development of experimental allergic asthma [127], meaning that complement activation can mediate allergic responses induced by mRNA-LNP vaccines. Figure 3 shows that anaphylatoxins can induce degranulation of mast cells to cause anaphylaxis. A better understanding of interactions between PEGylated nanoparticles and the blood immune system is necessary for developing effective and safe PEG-LNP vaccines to reduce ABC phenomenon and allergic responses.

Figure 3. PEG induces complement activation-associated anaphylaxis and ABC phenomenon. PEGylated mRNA-LNP vaccine induces cross linking of B cell receptors. B cells are then differentiated into plasma cells. Plasma cells produce anti-PEG antibodies. Anti-PEG IgE activates immune cells such as mast cells and basophils, resulting in anaphylaxis through Fc ϵ receptor in a complement-independent manner. PEG-anti-PEG-IgM complex can activate complement via classical pathway. Activation of complement produces anaphylatoxins such as C3a and C5a. These anaphylatoxins can stimulate mast cells to release various mediators and induce degranulation of mast cells. Anaphylatoxins can also induce immune cells to release PAF. PAF can bind to mast cells to cause degranulation of mast cells. PEG-mRNA-LNP vaccine can induce the production of anti-PEG IgM, which in turn can bind PEG-LNP. This binding can induce complement activation to produce complement fragments such as C3b and C5b. C3 can activate C5 convertase to produce C5a and C5b. These fragments can bind to complement receptors (CR3 and CR4) to induce ABC phenomenon by macrophages. Arrows denote the direction of reaction. ↓ denotes decreased expression/activity and ↑ denotes increased expression/activity. LTR, leukotriene receptor; Tx2, thromboxane A2; PGE, poly glutamic acid ethylene oxide.

8. How to Reduce Immune Responses Associated with PEG

Many polymers, including polyvinylpyrrolidone and poly(2-methyl-2-oxazoline), can induce polymer-specific antibodies [128]. These antibodies contribute to the pathogenesis of HSRs and the ABC phenomenon [129,130]. mRNA-LNP complexes can cause allergies and autoimmune diseases [90,131,132]. Thus, it is necessary to minimize these immune-related adverse reactions resulting from repeated delivery of mRNA-LNPs. Each component of LNP formulations can elicit an immune response. Replacing each component might reduce immune-related adverse reactions induced by mRNA-LNP vaccines. Since PEG is considered an epitope, PEG density on the surface of LNP can influence the production of anti-PEG IgM. High molecular weight PEGs can cause HSRs more easily than low molecular weight PEGs [133] owing to high level of anti-PEG IgM.

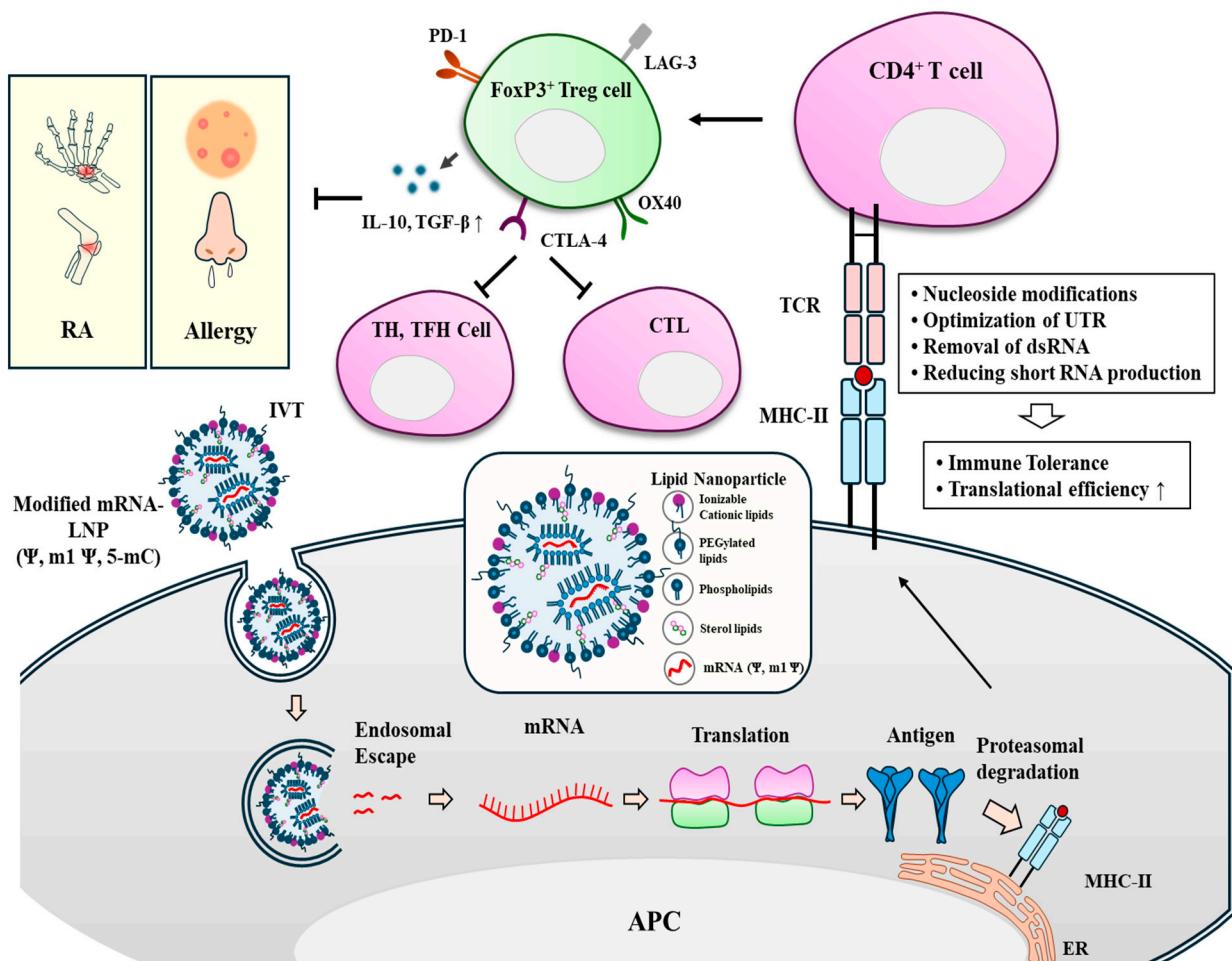
However, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE)-PE_{2,40k} (branched PEG lipid derivative) does not trigger the ABC phenomenon ow-

ing to the fact that 40 kDa DSPE-PE_{2,40k} can induce lower anti-PEG IgM levels than linear PEG-modified nanocarriers (DSPE-PE_{40k}) [134]. Cleavable-branched and branched PEG-lipid derivatives can reduce the ABC phenomenon by inducing lower levels of anti-PEG antibodies [135].

High molecular weight (MW) free PEG can enhance the stability of PEG liposomes in animals with high levels of pre-existing anti-PEG antibody (APA) by suppressing APA production [136,137]. Free PEG can cause durable suppression of the APA response [136]. Free PEG might also be able to inhibit anaphylaxis by saturating B cell receptors (BCRs) to prevent the infused PEG-liposome from activating BCRs and inducing the production of APA. A lack of APA response might exert a negative effect on the ABC phenomenon.

Polysarcosine (PSar)-liposomes display fewer systemic and off-target interactions and higher stability than PEGylated liposomes [113]. PSar-liposomes can induce low levels of antibodies for PSar-liposomes [113]. Multiple injections of PSar-liposomes can reduce the ABC phenomenon by inhibiting accumulation of liposomes in the liver and spleen [113,138]. Liposomes with the longest PSar chain (68 mers) show enhanced stability and reduced ABC phenomenon compared with PEG-liposomes [139]. Poly (2-methyacryloyloxyethyl phosphorylcholine) (PMPC)-LNPs formulated from 1,2-dipalmitoyl-*sn*-glycero-3-phosphoethanolamine (DPPE)-LNPs display no cytotoxic effects or induce inflammatory responses. They also exhibit higher mRNA transfection efficiency than PEG-LNPs [108]. Poly-glutamic acid-ethylene oxide (PGE) graft copolymers can replace PEG on LNPs [83]. Unlike PEG-LNPs, PGE-LNP does not induce production of the anti-PEG antibody [83]. Injection of Rg3-liposomes does not induce production of IgM or activation of the complement system in blood circulation [140]. Thus, Rg3 can enhance the stability of liposomes without inducing the ABC phenomenon or immune responses. These reports indicate that replacing PEG with other polymers can decrease immune-related adverse reactions induced by PEG-mRNA-LNP vaccines.

Structural modification of the PEG moiety might reduce immunogenicity associated with PEG. Methoxy PEG grafting to allogeneic splenocytes can increase the number of Treg cells while decreasing Th17 lymphocytes [141]. This indicates that modification of PEG can induce immune tolerance. For example, polysialic acid-modified liposomes do not induce immune responses typical of PEGylated liposomes [142]. Inserting gangliosides into the bilayer beside PEG can also suppress the production of anti-PEG IgM [143]. A negative charge on PEG at the liposomal surface can induce HSRs by activating the complement system [144]. However, conjugating PEG200 to cholesterol (CHOL-PEG) can reduce complement activation to attenuate HSRs [144]. Thus, structural modifications of PEG can regulate immune-related adverse reactions by promoting immune tolerance.


9. Tolerance-Inducing mRNAs Can Reduce Allergies and Autoimmunity

Vaccine technology using mRNA-LNP can be employed to suppress antigen-specific immune responses [145,146]. Since mRNA-LNP vaccines can induce allergies and autoimmune response, it is critical to develop tolerogenic vaccines that are safe and effective. PEGylated nanoparticles can create a tolerogenic immune microenvironment by inducing lower complement activation than non-PEGylated PLGA nanoparticles around the injection site [147]. mRNA-LNP encoding non-allergenic MHC-II-binding epitopes has shown tolerogenic effects in a mouse model of peanut anaphylaxis [148]. This tolerogenic effect is mediated by tolerogenic Treg cells and accompanied by suppression of the production of Th2 cytokines (IL-4, IL-5, and IL-13), IgE synthesis, and increased expression of TGF- β and IL-10 [148]. PEG-mRNA-LNP enclosing antigenic T cell epitope can increase frequencies of Foxp3⁺Tregs while decreasing antigen-specific T cells producing TNF [149].

The PEGylated mRNA-LNP vaccine can be considered as a self-antigen that can cause autoimmune diseases. Modification of mRNA can treat allergies and autoimmune diseases associated with mRNA-LNP vaccines [148,150]. Modified mRNA-LNP can enter cells via endocytosis. After endocytosis, mRNA undergoes endosomal escape. mRNA is then translated into antigens. After proteasomal breakdown into peptides, these peptides are then presented on the surface of APCs to induce the generation of Foxp3^+ regulatory T cells (Treg), which can induce tolerance to allergens or self-antigens [148].

Modifying nucleosides can suppress inflammation induced by exogenous mRNAs [151]. For example, uridine can be replaced with pseudouridine (Ψ) or $\text{m}1\Psi$, and cytosine can be replaced with 5-methyl cytosine. Unmodified mRNA can induce the production of type I IFN by stimulating innate immune sensors [152]. Unmodified ovalbumin (OVA)-LNP shows better anti-tumor effects than OVA-LNP with $\text{m}1\Psi$ modification [153]. Unmodified OVA-LNP can increase the number of CD40^+ DCs and the frequency of granzyme B $^+$ /IFN- γ $^+$ /TNF- α $^+$ OVA peptide-specific CD8 $^+$ T cells [153]. Unmodified mRNA can also induce the production of proinflammatory cytokines including IFN- γ , TNF- α , and IL-2. However, high doses of Ψ -modified mRNA do not induce the production of proinflammatory cytokines [153,154]. Thus, Ψ -modified mRNA might induce a tolerogenic effect. It has been shown that $\text{m}1\Psi$ -modified mRNA displays high translational efficiency without inducing innate immune responses [155,156]. Such $\text{m}1\Psi$ -modified mRNA does not induce activation of TLR7 [157]. It has been found that $\text{m}1\Psi$ mRNA can induce proliferation of immune suppressive FoxP3 $^+$ T reg cells to attenuate peanut-induced anaphylaxis. This effect is accompanied by decreased expression of Th2 cytokines and IgE synthesis [148]. However, $\text{m}1\Psi$ mRNA does not lead to generalized immune suppression due to tolerogenic effects on APCs such as DCs [148]. In other words, DCs remain functional after internalization of $\text{m}1\Psi$ mRNA.

Unmodified mRNA and small dsRNA can induce innate immunity and immune-related adverse reactions [158]. Modification and codon optimization of mRNA may decrease the risk of unwanted immune responses associated with mRNA-LNP vaccines. There are several ways to achieve immune tolerance: (1) nucleoside modifications, which may suppress activation of innate immune sensors and production of inflammatory cytokines; (2) optimization of UTR, which may increase translation efficiency and reduce immunogenicity of mRNA-LNP; (3) removal of dsRNA during IVT, which may reduce the production of inflammatory cytokines induced by mRNA-LNP vaccine; (4) reducing short RNA production during IVT, which may reduce the induction of innate immunity; and (5) introduction of conformational changes into T7 RNA polymerase, which may reduce production of dsRNA during IVT. Figure 4 shows that mRNA modification can induce immune tolerance to treat allergies, RA, and type I diabetes resulting from injection of PEGylated mRNA-LNP vaccines.

Figure 4. Induction of immune tolerance by mRNA-LNP. After endocytosis of modified PEG-mRNA-LNP vaccine by APC, mRNA undergoes endosomal escape. mRNA is then released and translated into antigen. Antigenic epitopes can be presented on MHC-II and bind to TCR on CD4⁺ T cells. CD4⁺ T cells are then differentiated into FoxP3⁺ Treg cells. Treg cells can secrete immune suppressive cytokines such as IL-10 and TGF- β . These Treg cells can induce immune tolerance. This tolerogenic effect is accompanied by decreased expression TH2 cytokines and IgE. CTLA-4, cytotoxic T-lymphocyte antigen 4; IVT, in vitro transcription; LAG3, lymphocyte activation gene-3; PD-1, programmed death-1; RA, rheumatoid. Arrows and hollow arrows denote the direction of reaction. T bars denote inhibition of reaction. ↑ denotes increased expression/activity.

10. Discussion and Perspectives

Current clinical trials have shown that mRNA-LNP vaccines will continue to be treatment paradigms. However, these mRNA-LNP vaccines are known to cause unwanted immune responses. Vaccination with any COVID-19 vaccine (BNT162b2, Ad26.COV2.S, and mRNA-1273) can reduce risk of developing long COVID [159]. Individuals who have booster vaccination of mRNA-based COVID-19 vaccines (BNT162b2, mRNA-1273) display a higher risk of developing autoimmune connective diseases including rheumatoid arthritis and alopecia areata [160]. Concerns regarding the development of autoimmunity may exert a negative impact on uptake of COVID-19 vaccines. COVID-19 vaccines (BNT162b2 and CoronaVac) can cause autoimmune conditions requiring hospital care [161]. It would be necessary to develop tolerogenic mRNA-LNP vaccines to reduce the risk of developing autoimmune diseases.

The occurrence of PEG antibodies in the general population is increasing every year due to wide use of PEG in daily life and the development of sensitive assay systems for

detecting anti-PEG antibodies. The ABC phenomenon induced by anti-PEG antibody could diminish the therapeutic efficacy of PEGylated products and increase the risk of HSR. It will be necessary to better understand the interplay between nanostructures and immune cells to reduce the ABC phenomenon. The contents of LNPs, dosing schedules, and routes of administration may reduce the ABC phenomenon. The role of PEGs in the induction of HSRs, ABC phenomenon, anaphylaxis, and mechanisms associated with these immunological reactions should be further investigated to make safe and effective mRNA-LNP vaccines. It is also necessary to test immunogenicity of PEGylated mRNA-LNP vaccines in animal models in association with the ABC phenomenon, CARPA, and HSRs.

To develop effective mRNA-LNP vaccines, it will be necessary to reduce unwanted immune responses associated with mRNA-LNPs. The following approaches may improve the efficacy of mRNA-LNPs: (1) optimizing mRNA sequence and molecular modification for inducing tolerogenic effects; (2) identifying route of administration for reducing immune-related adverse events; and (3) identifying PEG alternatives to reduce ABC phenomenon and HSRs. The induction of antigen-specific immune tolerance by modifying the mRNA-LNP vaccine has shown clinical benefits for treating allergic diseases. Circular IVT-mRNA produced by permuted intron-exon splicing circularization has shown low immunogenicity without altering protein production [162].

Since PEGylated LNP-mRNA vaccines can cause the ABC phenomenon and allergies, it will be necessary to identify PEG alternatives. Polypropylene glycol (PPG), polytetramethylene ether glycol (PTMEG), and poly-1,4-butylene adipate (PBA) can replace PEG in mRNA-LNPs [160]. However, these polymers may react with the anti-PEG antibody [163] and cause unwanted immune responses, including the ABC phenomenon, CARPA, and various other immune-related adverse reactions. The clinical skin prick test employing a panel consisting of PEG and PEG alternatives can enhance the chance to identify patients who might develop allergic reactions to mRNA-LNP vaccines containing PEG or PEG alternatives. To reduce the risk of the ABC phenomenon and CARPA associated with mRNA-LNP vaccines, it is necessary to identify individuals with natural anti-PEG antibody [78,98].

To develop mRNA-LNP vaccines that would not cause the ABC phenomenon or immune-related adverse reactions resulting from immunogenicity of PEG, it is necessary to understand interactions of PEG and PEG alternatives with immune cells. Studies on the immunogenicity of PEG and PEG alternatives should be carried out in the context of the whole PEG-mRNA-LNP vaccine. Public databases summarizing immunological and physicochemical properties of PEG and PEG alternatives using various excipients and whole products could provide valuable information on the selection of PEG and PEG alternatives for mRNA-LNP vaccines.

Since anti-PEG antibodies can be detected in individuals who have never received PEGylated vaccines, it is necessary to develop vaccines based on PEG-free delivery systems. Since PEG cannot be easily modified, it is reasonable to devise vaccines based on PEG-free systems. There have been reports concerning the effectiveness of PEG-lipid-free vaccines. It has been shown that a PEG-free two-component mRNA vaccine (PFTCmvac) containing a receptor binding domain of SARS-CoV2 can induce strong adaptive and innate immunity without causing immune-related adverse reactions [164]. Furthermore, PFTCmvac does not induce activation of the complement system [164]. Thus, PFTCmvac can be an alternative delivery vehicle for COVID-19 vaccines. mRNA-LNPs based on monoacyl POx/POz-lipids have displayed transfection efficiencies, cytocompatibility, and biophysical properties comparable to PEG-lipid equivalents [165]. PEG-lipid alternatives based on reversible addition-fragmentation chain transfer (RAFT) have displayed higher gene expression and antigen-specific antibody production than conventional PEGylated LNPs [166].

11. Conclusions

COVID-19 has accelerated the acceptance of mRNA-LNPs. mRNA-LNPs have shown clinical benefits. Transcriptomic analysis of individual patients will give valuable information for designing safe and effective COVID-19 vaccines. It has been shown that mRNA-LNPs can elicit unwanted immune reactions including anaphylaxis, hypersensitivity, and autoimmunity. To make more effective and safe vaccines, it will be necessary to develop tolerogenic mRNA-LNPs to prevent the induction of unwanted immune reactions. mRNA-LNPs have a tendency to become trapped in endosomes, which can exert toxic effects. It is necessary to improve endosomal escape of mRNA-LNPs to reduce toxicity and improve efficiency. Overcoming problems associated with mRNA-LNPs will make mRNA-LNPs a cornerstone of personalized therapy.

LNPs can carry Cas-9 mRNA or guide mRNA, suggesting that LNPs can be employed as a delivery vehicle for gene editing. In other words, mRNA-LNPs can be employed to treat various genetic diseases. To broaden the use of mRNA-LNPs, the targeting of mRNA-LNPs to various organs is needed. Based on recent technological progresses, the future of mRNA-LNPs vaccines beyond the pandemic is optimistic.

Author Contributions: H.J., J.J., W.K. and D.J. contributed to the original draft preparation, review, and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Research Foundation grants (2020R1A2C1006996, 2022R1F1A1060031, and 2017M3A9G7072417) and a grant from the BK21 Four Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Berraondo, P.; Cuesta, R.; Sanmamed, M.F.; Melero, I. Immunogenicity and Efficacy of Personalized Adjuvant mRNA Cancer Vaccines. *Cancer Discov.* **2024**, *14*, 2021–2024. [[CrossRef](#)] [[PubMed](#)]
2. Maher, S.; Assaly, N.M.E.; Aly, D.M.; Atta, S.; Fteah, A.M.; Badawi, H.; Zahran, M.Y.; Kamel, M. Comparative study of neutralizing antibodies titers in response to different types of COVID-19 vaccines among a group of egyptian healthcare workers. *Virol. J.* **2024**, *21*, 277. [[CrossRef](#)]
3. Kumar, S.; Hsiao, Y.W.; Wong, V.H.Y.; Aubin, D.; Wang, J.H.; Lisowski, L.; Rakoczy, E.P.; Li, F.; Alarcon-Martinez, L.; Gonzalez-Cordero, A.; et al. Characterization of RNA editing and gene therapy with a compact CRISPR-Cas13 in the retina. *Proc. Natl. Acad. Sci. USA* **2024**, *121*, e2408345121. [[CrossRef](#)] [[PubMed](#)]
4. Gao, Y.; Yang, L.; Li, Z.; Peng, X.; Li, H. mRNA vaccines in tumor targeted therapy: Mechanism, clinical application, and development trends. *Biomark. Res.* **2024**, *12*, 93. [[CrossRef](#)]
5. Yang, L.; Gong, L.; Wang, P.; Zhao, X.; Zhao, F.; Zhang, Z.; Li, Y.; Huang, W. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. *Pharmaceutics* **2022**, *14*, 2682. [[CrossRef](#)]
6. Park, S.; Kim, G.; Choi, A.; Kim, S.; Yum, J.S.; Chun, E.; Shin, H. Comparative network-based analysis of toll-like receptor agonist, L-pampo signaling pathways in immune and cancer cells. *Sci. Rep.* **2024**, *14*, 17173. [[CrossRef](#)] [[PubMed](#)]
7. Presnyak, V.; Alhusaini, N.; Chen, Y.H.; Martin, S.; Morris, N.; Kline, N.; Olson, S.; Weinberg, D.; Baker, K.E.; Graveley, B.R.; et al. Codon optimality is a major determinant of mRNA stability. *Cell* **2015**, *160*, 1111–1124. [[CrossRef](#)] [[PubMed](#)]
8. Mamaghani, S.; Penna, R.R.; Frei, J.; Wyss, C.; Mellett, M.; Look, T.; Weiss, T.; Guenova, E.; Kündig, T.M.; Lauchli, S.; et al. Synthetic mRNAs Containing Minimalistic Untranslated Regions Are Highly Functional In Vitro and In Vivo. *Cells* **2024**, *13*, 1242. [[CrossRef](#)]
9. Cheng, Z.; Islam, S.; Kanlong, J.G.; Sheppard, M.; Seo, H.; Nikolaitchik, O.A.; Kearse, M.G.; Pathak, V.K.; Musier-Forsyth, K.; Hu, W.S. Translation of HIV-1 unspliced RNA is regulated by 5' untranslated region structure. *J. Virol.* **2024**, *98*, e0116024. [[CrossRef](#)]
10. Rohner, E.; Yang, R.; Foo, K.S.; Goedel, A.; Chien, K.R. Unlocking the promise of mRNA therapeutics. *Nat. Biotechnol.* **2022**, *40*, 1586–1600. [[CrossRef](#)] [[PubMed](#)]

11. Miao, L.; Zhang, Y.; Huang, L. mRNA vaccine for cancer immunotherapy. *Mol. Cancer* **2021**, *20*, 41. [\[CrossRef\]](#) [\[PubMed\]](#)
12. Peng, L.; Renauer, P.A.; Ökten, A.; Fang, Z.; Park, J.J.; Zhou, X.; Lin, Q.; Dong, M.B.; Filler, R.; Xiong, Q.; et al. Variant-specific vaccination induces systems immune responses and potent in vivo protection against SARS-CoV-2. *Cell Rep. Med.* **2022**, *3*, 100634. [\[CrossRef\]](#) [\[PubMed\]](#)
13. Ge, N.; Sun, J.; Liu, Z.; Shu, J.; Yan, H.; Kou, Z.; Wei, Y.; Jin, X. An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses. *Virol. Sin.* **2022**, *37*, 266–276. [\[CrossRef\]](#)
14. Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. *Nat. Rev. Mater.* **2021**, *6*, 1078–1094. [\[CrossRef\]](#) [\[PubMed\]](#)
15. Rivero Berti, I.; Gambaro, R.C.; Limeres, M.J.; Huck-Iriart, C.; Svensson, M.; Fraude-El Ghazi, S.; Pretsch, L.; Si, S.; Lieberwirth, I.; Landfester, K.; et al. Encapsulation of Dexamethasone into mRNA-Lipid Nanoparticles Is a Promising Approach for the Development of Liver-Targeted Anti-Inflammatory Therapies. *Int. J. Mol. Sci.* **2024**, *25*, 11254. [\[CrossRef\]](#)
16. Ding, Y.; Chen, Q.B.; Xu, H.; Adi, D.; Ding, Y.W.; Luo, W.J.; Zhu, W.Z.; Xu, J.C.; Zhao, X.; Shi, X.J.; et al. siRNA nanoparticle targeting Usp20 lowers lipid levels and ameliorates metabolic syndrome in mice. *J. Lipid Res.* **2024**, *65*, 100626. [\[CrossRef\]](#) [\[PubMed\]](#)
17. Tenchov, R.; Sasso, J.M.; Zhou, Q.A. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. *Bioconjug. Chem.* **2023**, *34*, 941–960. [\[CrossRef\]](#)
18. Paun, R.A.; Jurchuk, S.; Tabrizian, M. A landscape of recent advances in lipid nanoparticles and their translational potential for the treatment of solid tumors. *Bioeng. Transl. Med.* **2023**, *9*, e10601. [\[CrossRef\]](#) [\[PubMed\]](#)
19. Hald Albertsen, C.; Kulkarni, J.A.; Witzigmann, D.; Lind, M.; Petersson, K.; Simonsen, J.B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. *Adv. Drug Deliv. Rev.* **2022**, *188*, 114416. [\[CrossRef\]](#) [\[PubMed\]](#)
20. Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. *Mol. Ther.* **2019**, *27*, 710–728. [\[CrossRef\]](#)
21. Fuentes, S.; Arancibia, D.; Rojas, M.; Carmona, F.; Ortega, A.; Valenzuela, J.; Hernández-Álvarez, C.; Martín, I.R. Simultaneous Second Harmonic Generation and Multiphoton Excited Photoluminescence in Samarium-Doped BaTiO₃ Nanoparticles Functionalized with Poly (ethylene glycol). *ACS Omega* **2024**, *9*, 28061–28071. [\[CrossRef\]](#) [\[PubMed\]](#)
22. Geng, L.; Kato, N.; Kodama, Y.; Mukai, H.; Kawakami, S. Influence of lipid composition of messenger RNA-loaded lipid nanoparticles on the protein expression via intratracheal administration in mice. *Int. J. Pharm.* **2023**, *637*, 122896. [\[CrossRef\]](#) [\[PubMed\]](#)
23. Yang, M.Y.; Zheng, M.H.; Meng, X.T.; Ma, L.W.; Liang, H.Y.; Fan, H.Y. Role of toll-like receptors in the pathogenesis of COVID-19: Current and future perspectives. *Scand. J. Immunol.* **2023**, *98*, e13275. [\[CrossRef\]](#)
24. Klein, C.R.; Heine, A.; Brossart, P.; Karakostas, P.; Schäfer, V.S. Anti-MDA5 autoantibodies predict clinical dynamics of dermatomyositis following SARS-CoV-2 mRNA vaccination: A retrospective statistical analysis of case reports. *Rheumatol. Int.* **2024**, *44*, 2185–2196. [\[CrossRef\]](#) [\[PubMed\]](#)
25. Villacampa, A.; Alfaro, E.; Morales, C.; Díaz-García, E.; López-Fernández, C.; Bartha, J.L.; López-Sánchez, F.; Lorenzo, Ó.; Moncada, S.; Sánchez-Ferrer, C.F.; et al. SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates coagulation factors in endothelial and immune cells. *Cell Commun. Signal* **2024**, *22*, 38. [\[CrossRef\]](#)
26. Jeon, H.E.; Lee, S.; Lee, J.; Roh, G.; Park, H.J.; Lee, Y.S.; Kim, Y.J.; Kim, H.K.; Shin, J.H.; Lee, Y.J.; et al. SARS-CoV-2 mRNA vaccine intravenous administration induces myocarditis in chronic inflammation. *PLoS ONE* **2024**, *19*, e0311726. [\[CrossRef\]](#) [\[PubMed\]](#)
27. Bredholt, G.; Sævik, M.; Søyland, H.; Ueland, T.; Zhou, F.; Pathirana, R.; Madsen, A.; Vahokoski, J.; Lartey, S.; Halvorsen, B.E.; et al. Three doses of SARS-CoV-2 mRNA vaccine in older adults result in similar antibody responses but reduced cellular cytokine responses relative to younger adults. *Vaccine X* **2024**, *20*, 100564. [\[CrossRef\]](#)
28. Tahtinen, S.; Tong, A.J.; Himmels, P.; Oh, J.; Paler-Martinez, A.; Kim, L.; Wichner, S.; Oei, Y.; McCarron, M.J.; Freund, E.C.; et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. *Nat. Immunol.* **2022**, *23*, 532–542. [\[CrossRef\]](#) [\[PubMed\]](#)
29. Kim, S.; Jeon, J.H.; Kim, M.; Lee, Y.; Hwang, Y.H.; Park, M.; Li, C.H.; Lee, T.; Lee, J.A.; Kim, Y.M.; et al. Innate immune responses against mRNA vaccine promote cellular immunity through IFN-beta at the injection site. *Nat. Commun.* **2024**, *15*, 7226. [\[CrossRef\]](#) [\[PubMed\]](#)
30. Gangaev, A.; van Sleen, Y.; Brandhorst, N.; Hoefakker, K.; Prajapati, B.; Singh, A.; Boerma, A.; van der Heiden, M.; Oosting, S.F.; van der Veldt, A.A.M.; et al. mRNA-1273 vaccination induces polyfunctional memory CD4 and CD8 T cell responses in patients with solid cancers undergoing immunotherapy or/and chemotherapy. *Front. Immunol.* **2024**, *15*, 1447555. [\[CrossRef\]](#)
31. Lederer, K.; Castaño, D.; Gómez Atria, D.; Oguin, T.H., 3rd; Wang, S.; Manzoni, T.B.; Muramatsu, H.; Hogan, M.J.; Amanat, F.; Cherubin, P.; et al. SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. *Immunity* **2020**, *53*, 1281–1295.e5. [\[CrossRef\]](#)

32. Alameh, M.G.; Tombácz, I.; Bettini, E.; Lederer, K.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; Hicks, P.; et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. *Immunity* **2021**, *54*, 2877–2892. [\[CrossRef\]](#) [\[PubMed\]](#)

33. Li, C.; Lee, A.; Grigoryan, L.; Arunachalam, P.S.; Scott, M.K.D.; Trisal, M.; Wimmers, F.; Sanyal, M.; Weidenbacher, P.A.; Feng, Y.; et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. *Nat. Immunol.* **2022**, *23*, 543–555. [\[CrossRef\]](#)

34. Korzun, T.; Moses, A.S.; Jozic, A.; Grigoriev, V.; Newton, S.; Kim, J.; Diba, P.; Sattler, A.; Levasseur, P.R.; Le, N.; et al. Lipid Nanoparticles Elicit Reactogenicity and Sickness Behavior in Mice Via Toll-Like Receptor 4 and Myeloid Differentiation Protein 88 Axis. *ACS Nano* **2024**, *18*, 24842–24859. [\[CrossRef\]](#) [\[PubMed\]](#)

35. Lonez, C.; Bessodes, M.; Scherman, D.; Vandenbranden, M.; Escriou, V.; Ruysschaert, J.M. Cationic lipid nanocarriers activate toll-like receptor 2 and NLRP3 inflammasome pathways. *Nanomedicine* **2014**, *10*, 775–782. [\[CrossRef\]](#)

36. Bakos, T.; Mészáros, T.; Kozma, G.T.; Berényi, P.; Facskó, R.; Farkas, H.; Dézsi, L.; Heirman, C.; de Koker, S.; Schiffelers, R.; et al. mRNA-LNP COVID-19 Vaccine Lipids Induce Complement Activation and Production of Proinflammatory Cytokines: Mechanisms, Effects of Complement Inhibitors, and Relevance to Adverse Reactions. *Int. J. Mol. Sci.* **2024**, *25*, 3595. [\[CrossRef\]](#) [\[PubMed\]](#)

37. Liu, Y.; Suzuoki, M.; Tanaka, H.; Sakurai, Y.; Hatakeyama, H.; Akita, H. Lymphatic Endothelial Cells Produce Chemokines in Response to the Lipid Nanoparticles Used in RNA Vaccines. *Biol. Pharm. Bull.* **2024**, *47*, 698–707. [\[CrossRef\]](#) [\[PubMed\]](#)

38. Zheng, C.; Zhang, L. Identifying RNA Sensors in Antiviral Innate Immunity. *Methods Mol. Biol.* **2025**, *2854*, 107–115. [\[PubMed\]](#)

39. Kos, M.; Bojarski, K.; Mertowska, P.; Mertowski, S.; Tomaka, P.; Dziki, Ł.; Grywalska, E. Immunological Strategies in Gastric Cancer: How Toll-like Receptors 2, -3, -4, and -9 on Monocytes and Dendritic Cells Depend on Patient Factors? *Cells* **2024**, *13*, 1708. [\[CrossRef\]](#) [\[PubMed\]](#)

40. Domínguez-López, A.; Garfias, Y. Cytokine profile of human limbal myofibroblasts: Key players in corneal antiviral response. *Cytokine* **2022**, *160*, 156047. [\[CrossRef\]](#) [\[PubMed\]](#)

41. Roßmann, L.; Bagola, K.; Stephen, T.; Gerards, A.L.; Walber, B.; Ullrich, A.; Schülke, S.; Kamp, C.; Spreitzer, I.; Hasan, M.; et al. Distinct single-component adjuvants steer human DC-mediated T-cell polarization via Toll-like receptor signaling toward a potent antiviral immune response. *Proc. Natl. Acad. Sci. USA* **2021**, *118*, e2103651118. [\[CrossRef\]](#) [\[PubMed\]](#)

42. King, H.A.D.; Pokkali, S.; Kim, D.; Brammer, D.; Song, K.; McCarthy, E.; Lehman, C.; Todd, J.P.; Foulds, K.E.; Darrah, P.A.; et al. Immune Activation Profiles Elicited by Distinct, Repeated TLR Agonist Infusions in Rhesus Macaques. *J. Immunol.* **2023**, *211*, 1643–1655. [\[CrossRef\]](#) [\[PubMed\]](#)

43. Zhang, H.; You, X.; Wang, X.; Cui, L.; Wang, Z.; Xu, F.; Li, M.; Yang, Z.; Liu, J.; Huang, P.; et al. Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. *Proc. Natl. Acad. Sci. USA* **2021**, *118*, e2005191118. [\[CrossRef\]](#)

44. Usero, L.; Leal, L.; Gómez, C.E.; Miralles, L.; Aurrecoechea, E.; Esteban, I.; Torres, B.; Inciarte, A.; Perdiguero, B.; Esteban, M.; et al. The Combination of an mRNA Immunogen, a TLR7 Agonist and a PD1 Blocking Agent Enhances In-Vitro HIV T-Cell Immune Responses. *Vaccines* **2023**, *11*, 286. [\[CrossRef\]](#)

45. Zhang, Y.; Yan, J.; Hou, X.; Wang, C.; Kang, D.D.; Xue, Y.; Du, S.; Deng, B.; McComb, D.W.; Liu, S.L.; et al. STING Agonist-Derived LNP-mRNA Vaccine Enhances Protective Immunity Against SARS-CoV-2. *Nano Lett.* **2023**, *23*, 2593–2600. [\[CrossRef\]](#)

46. Abo-Samaha, M.I.; Sharaf, M.M.; El-Nahas, A.F.; Odemuyiwa, S.O. Length-Dependent Modulation of B Cell Activating Factor Transcripts in Chicken Macrophage by Viral Double-Stranded RNA. *Vaccines* **2023**, *11*, 1561. [\[CrossRef\]](#)

47. Choudhury, A.; Das, N.C.; Patra, R.; Mukherjee, S. In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. *J. Med. Virol.* **2021**, *93*, 2476–2486. [\[CrossRef\]](#)

48. Miquel, C.H.; Abbas, F.; Cenac, C.; Foret-Lucas, C.; Guo, C.; Ducatez, M.; Joly, E.; Hou, B.; Guéry, J.C. B cell-intrinsic TLR7 signaling is required for neutralizing antibody responses to SARS-CoV-2 and pathogen-like COVID-19 vaccines. *Eur. J. Immunol.* **2023**, *53*, e2350437. [\[CrossRef\]](#) [\[PubMed\]](#)

49. Xie, Y.; Chi, Y.; Tao, X.; Yu, P.; Liu, Q.; Zhang, M.; Yang, N.; Liu, S.; Zhu, W. Rabies Virus Regulates Inflammatory Response in BV-2 Cells through Activation of Myd88 and NF-κB Signaling Pathways via TLR7. *Int. J. Mol. Sci.* **2024**, *25*, 9144. [\[CrossRef\]](#) [\[PubMed\]](#)

50. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. *Signal Transduct. Target. Ther.* **2017**, *2*, 17023. [\[CrossRef\]](#) [\[PubMed\]](#)

51. Allard, R.L.; Mayfield, J.; Barchiesi, R.; Salem, N.A.; Mayfield, R.D. Toll-like receptor 7: A novel neuroimmune target to reduce excessive alcohol consumption. *Neurobiol. Stress* **2024**, *31*, 100639. [\[CrossRef\]](#) [\[PubMed\]](#)

52. Wang, B.; Le, D.S.; Liu, L.; Zhang, X.X.; Yang, F.; Lai, G.R.; Zhang, C.; Zhao, M.L.; Shen, Y.P.; Liao, P.S.; et al. Targeting exosomal double-stranded RNA-TLR3 signaling pathway attenuates morphine tolerance and hyperalgesia. *Cell Rep. Med.* **2024**, *5*, 101782. [\[CrossRef\]](#) [\[PubMed\]](#)

53. Zhi, Y.; Zhao, X.; Liu, Z.; Shen, G.; Zhang, T.; Zhang, T.; Hu, G. Oxymatrine Modulation of TLR3 Signaling: A Dual-Action Mechanism for H9N2 Avian Influenza Virus Defense and Immune Regulation. *Molecules* **2024**, *29*, 1945. [\[CrossRef\]](#) [\[PubMed\]](#)

54. Lamoot, A.; Jangra, S.; Laghlali, G.; Warang, P.; Singh, G.; Chang, L.A.; Park, S.C.; Singh, G.; De Swarte, K.; Zhong, Z.; et al. Lipid Nanoparticle Encapsulation Empowers Poly(I:C) to Activate Cytoplasmic RLRs and Thereby Increases Its Adjuvanticity. *Small* **2024**, *20*, e2306892. [\[CrossRef\]](#)

55. Zhang, H.; Sandhu, P.K.; Damania, B. The Role of RNA Sensors in Regulating Innate Immunity to Gammaherpesviral Infections. *Cells* **2023**, *12*, 1650. [\[CrossRef\]](#) [\[PubMed\]](#)

56. Mikhalkovich, N.; Russ, E.; Jordanskiy, S. Cellular RNA and DNA sensing pathways are essential for the dose-dependent response of human monocytes to ionizing radiation. *Front. Immunol.* **2023**, *14*, 1235936. [\[CrossRef\]](#) [\[PubMed\]](#)

57. Madaan, V.; Kollara, A.; Spaner, D.; Brown, T.J. ISGylation enhances dsRNA-induced interferon response and NF κ B signaling in fallopian tube epithelial cells. *J. Biol. Chem.* **2024**, *300*, 107686. [\[CrossRef\]](#) [\[PubMed\]](#)

58. Karasik, A.; Lorenzi, H.A.; DePass, A.V.; Guydosh, N.R. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. *Cell Rep.* **2024**, *43*, 114287. [\[CrossRef\]](#) [\[PubMed\]](#)

59. Chaumont, L.; Peruzzi, M.; Huetz, F.; Raffy, C.; Le Hir, J.; Minke, J.; Boudinot, P.; Collet, B. Salmonid Double-stranded RNA-Dependent Protein Kinase Activates Apoptosis and Inhibits Protein Synthesis. *J. Immunol.* **2024**, *213*, 700–717. [\[CrossRef\]](#)

60. Yu, H.; Megawati, D.; Zheng, C.; Rothenberg, S. Protein Kinase R (PKR) as a Novel dsRNA Sensor in Antiviral Innate Immunity. *Methods Mol. Biol.* **2025**, *2854*, 265–282.

61. Hu, J.; Hodgkinson, C.P.; Pratt, R.E.; Lee, J.; Sullenger, B.A.; Dzau, V.J. Enhancing cardiac reprogramming via synthetic RNA oligonucleotides. *Mol. Ther. Nucleic Acids* **2020**, *23*, 55–62. [\[CrossRef\]](#) [\[PubMed\]](#)

62. Zhao, M.; Wan, B.; Li, H.; He, J.; Chen, X.; Wang, L.; Wang, Y.; Xie, S.; Qiao, S.; Zhang, G. Porcine 2',5'-oligoadenylate synthetase 2 inhibits porcine reproductive and respiratory syndrome virus replication in vitro. *Microb. Pathog.* **2017**, *111*, 14–21. [\[CrossRef\]](#)

63. Aloise, C.; Schipper, J.G.; van Vliet, A.; Oymans, J.; Donselaar, T.; Hurdiss, D.L.; de Groot, R.J.; van Kuppeveld, F.J.M. SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b. *PLoS Pathog.* **2023**, *19*, e1011582. [\[CrossRef\]](#)

64. Tahsin, A.; Bhattacharjee, P.; Al Saba, A.; Yasmin, T.; Nabi, A.H.M.N. Genetic and epigenetic analyses of IFN- γ gene proximal promoter region underlying positive correlation between persistently high anti-SARS-CoV-2 IgG and IFN- γ among COVID-19 vaccinated Bangladeshi adults. *Vaccine* **2024**, *42*, 126157. [\[CrossRef\]](#)

65. Otter, C.J.; Bracci, N.; Parenti, N.A.; Ye, C.; Asthana, A.; Blomqvist, E.K.; Tan, L.H.; Pfannenstiel, J.J.; Jackson, N.; Fehr, A.R.; et al. SARS-CoV-2 nsp15 endoribonuclease antagonizes dsRNA-induced antiviral signaling. *Proc. Natl. Acad. Sci. USA* **2024**, *121*, e2320194121. [\[CrossRef\]](#) [\[PubMed\]](#)

66. Cusic, R.; Burke, J.M. Condensation of RNase L promotes its rapid activation in response to viral infection in mammalian cells. *Sci. Signal* **2024**, *17*, eadi9844. [\[CrossRef\]](#) [\[PubMed\]](#)

67. Yang, K.; Dong, B.; Asthana, A.; Silverman, R.H.; Yan, N. RNA helicase SKIV2L limits antiviral defense and autoinflammation elicited by the OAS-RNase L pathway. *EMBO J.* **2024**, *43*, 3876–3894. [\[CrossRef\]](#) [\[PubMed\]](#)

68. Kim, H.J.; Han, C.W.; Jeong, M.S.; Jang, S.B. Structural study of novel vaccinia virus E3L and dsRNA-dependent protein kinase complex. *Biochem. Biophys. Res. Commun.* **2023**, *665*, 1–9. [\[CrossRef\]](#) [\[PubMed\]](#)

69. Lee, J.; Xu, L.; Gibson, T.M.; Gersbach, C.A.; Sullenger, B.A. Differential effects of toll-like receptor stimulation on mRNA-driven myogenic conversion of human and mouse fibroblasts. *Biochem. Biophys. Res. Commun.* **2016**, *478*, 1484–1490. [\[CrossRef\]](#) [\[PubMed\]](#)

70. Fernández, J.J.; Mancebo, C.; Garcinuño, S.; March, G.; Alvarez, Y.; Alonso, S.; Inglada, L.; Blanco, J.; Orduña, A.; Montero, O.; et al. Innate IRE1 α -XBP1 activation by viral single-stranded RNA and its influence on lung cytokine production during SARS-CoV-2 pneumonia. *Genes Immun.* **2024**, *25*, 43–54. [\[CrossRef\]](#) [\[PubMed\]](#)

71. Kodigepalli, K.M.; Nanjundan, M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. *PLoS ONE* **2015**, *10*, e0117464. [\[CrossRef\]](#) [\[PubMed\]](#)

72. Chang, Y.; Jin, H.; Cui, Y.; Yang, F.; Chen, K.; Kuang, W.; Huo, C.; Xu, Z.; Li, Y.; Lin, A.; et al. PUS7-dependent pseudouridylation of ALKBH3 mRNA inhibits gastric cancer progression. *Clin. Transl. Med.* **2024**, *14*, e1811. [\[CrossRef\]](#)

73. Andries, O.; Mc Cafferty, S.; De Smedt, S.C.; Weiss, R.; Sanders, N.N.; Kitada, T. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. *J. Control. Release* **2015**, *217*, 337–344. [\[CrossRef\]](#) [\[PubMed\]](#)

74. Zhang, T.; Yin, C.; Fedorov, A.; Qiao, L.; Bao, H.; Beknazarov, N.; Wang, S.; Gautam, A.; Williams, R.M.; Crawford, J.C.; et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. *Nature* **2022**, *606*, 594–602. [\[CrossRef\]](#)

75. Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Kariko, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. *Nucleic Acids Res.* **2010**, *38*, 5884–5892. [\[CrossRef\]](#)

76. Anderson, B.R.; Muramatsu, H.; Jha, B.K.; Silverman, R.H.; Weissman, D.; Kariko, K. Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L. *Nucleic Acids Res.* **2011**, *39*, 9329–9338. [\[CrossRef\]](#) [\[PubMed\]](#)

77. Gebremeskel, S.; Schanin, J.; Coyle, K.M.; Butuci, M.; Luu, T.; Brock, E.C.; Xu, A.; Wong, A.; Leung, J.; Korver, W.; et al. Mast Cell and Eosinophil Activation Are Associated With COVID-19 and TLR-Mediated Viral Inflammation: Implications for an Anti-Siglec-8 Antibody. *Front. Immunol.* **2021**, *12*, 650331. [\[CrossRef\]](#) [\[PubMed\]](#)

78. Shah, M.M.; Layhadi, J.A.; Hourcade, D.E.; Fulton, W.T.; Tan, T.J.; Dunham, D.; Chang, I.; Vel, M.S.; Fernandes, A.; Lee, A.S.; et al. Elucidating allergic reaction mechanisms in response to SARS-CoV-2 mRNA vaccination in adults. *Allergy* **2024**, *79*, 2502–2523. [\[CrossRef\]](#) [\[PubMed\]](#)

79. Awaya, T.; Hara, H.; Moroi, M. Cytokine Storms and Anaphylaxis Following COVID-19 mRNA-LNP Vaccination: Mechanisms and Therapeutic Approaches. *Diseases* **2024**, *12*, 231. [\[CrossRef\]](#)

80. Calzetta, L.; Chetta, A.; Aiello, M.; Frizzelli, A.; Ora, J.; Melis, E.; Facciolo, F.; Ippoliti, L.; Magrini, A.; Rogliani, P. The BNT162b2 mRNA COVID-19 Vaccine Increases the Contractile Sensitivity to Histamine and Parasympathetic Activation in a Human Ex Vivo Model of Severe Eosinophilic Asthma. *Vaccines* **2023**, *11*, 282. [\[CrossRef\]](#) [\[PubMed\]](#)

81. Farooqui, A.A.; Farooqui, T.; Sun, G.Y.; Lin, T.N.; The, D.B.L.; Ong, W.Y. COVID-19, Blood Lipid Changes, and Thrombosis. *Biomedicines* **2023**, *11*, 1181. [\[CrossRef\]](#)

82. Suzuki, T.; Taketomi, Y.; Yanagida, K.; Yoshida-Hashidate, T.; Nagase, T.; Murakami, M.; Shimizu, T.; Shindou, H. Re-evaluation of the canonical PAF pathway in cutaneous anaphylaxis. *Biochim. Biophys. Acta Mol. Cell Biol. Lipids* **2024**, *1870*, 159563. [\[CrossRef\]](#)

83. Richter, A.W.; Akerblom, E. Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins. *Int. Arch. Allergy Appl. Immunol.* **1983**, *70*, 124–131. [\[CrossRef\]](#) [\[PubMed\]](#)

84. Qi, Y.; Han, H.; Liu, A.; Zhao, S.; Lawanprasert, A.; Nielsen, J.E.; Choudhary, H.; Liang, D.; Barron, A.E.; Murthy, N. Ethylene oxide graft copolymers reduce the immunogenicity of lipid nanoparticles. *RSC Adv.* **2024**, *14*, 30071–30076. [\[CrossRef\]](#) [\[PubMed\]](#)

85. Perkins, G.B.; Tunbridge, M.J.; Hurtado, P.R.; Zuiani, J.; Mhatre, S.; Yip, K.H.; Le, T.A.; Yuson, C.; Kette, F.; Hissaria, P. PEGylated liposomes for diagnosis of polyethylene glycol allergy. *J. Allergy Clin. Immunol.* **2024**, *154*, 503–507.e1. [\[CrossRef\]](#) [\[PubMed\]](#)

86. Kozma, G.T.; Mészáros, T.; Berényi, P.; Facskó, R.; Patkó, Z.; Oláh, C.Z.; Nagy, A.; Fülöp, T.G.; Glatter, K.A.; Radovits, T.; et al. Role of anti-polyethylene glycol (PEG) antibodies in the allergic reactions to PEG-containing COVID-19 vaccines: Evidence for immunogenicity of PEG. *Vaccine* **2023**, *41*, 4561–4570. [\[CrossRef\]](#)

87. Miao, G.; He, Y.; Lai, K.; Zhao, Y.; He, P.; Tan, G.; Wang, X. Accelerated blood clearance of PEGylated nanoparticles induced by PEG-based pharmaceutical excipients. *J. Control. Release* **2023**, *363*, 12–26. [\[CrossRef\]](#)

88. Carreño, J.M.; Singh, G.; Tcheou, J.; Srivastava, K.; Gleason, C.; Muramatsu, H.; Desai, P.; Aberg, J.A.; Miller, R.L.; Paris Study Group; et al. mRNA-1273 but not BNT162b2 induces antibodies against polyethylene glycol (PEG) contained in mRNA-based vaccine formulations. *Vaccine* **2022**, *40*, 6114–6124. [\[CrossRef\]](#) [\[PubMed\]](#)

89. Li, Y.; Saba, L.; Scheinman, R.I.; Banda, N.K.; Holers, M.; Monte, A.; Dylla, L.; Moghimi, S.M.; Simberg, D. Nanoparticle-Binding Immunoglobulins Predict Variable Complement Responses in Healthy and Diseased Cohorts. *ACS Nano* **2024**, *18*, 28649–28658. [\[CrossRef\]](#)

90. Chen, W.A.; Chang, D.Y.; Chen, B.M.; Lin, Y.C.; Barenholz, Y.; Roffler, S.R. Antibodies against Poly (ethylene glycol) Activate Innate Immune Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines. *ACS Nano* **2023**, *17*, 5757–5772. [\[CrossRef\]](#)

91. Park, M.K.; Park, H.K.; Yu, H.S. Toll-like receptor 2 mediates Acanthamoeba-induced allergic airway inflammatory response in mice. *PLoS Negl. Trop. Dis.* **2023**, *17*, e0011085. [\[CrossRef\]](#)

92. Lv, Y.; Jiang, G.; Jiang, Y.; Peng, C.; Li, W. TLR2-ERK signaling pathway regulates expression of galectin-3 in a murine model of OVA-induced allergic airway inflammation. *Toxicol. Lett.* **2024**, *397*, 55–66. [\[CrossRef\]](#) [\[PubMed\]](#)

93. Hashimoto, Y.; Abu Lila, A.S.; Shimizu, T.; Ishida, T.; Kiwada, H. B cell-intrinsic toll-like receptor 7 is responsible for the enhanced anti-PEG IgM production following injection of siRNA-containing PEGylated lipoplex in mice. *J. Control. Release* **2014**, *184*, 1–8. [\[CrossRef\]](#)

94. Stavnsbjerg, C.; Christensen, E.; Münter, R.; Henriksen, J.R.; Fach, M.; Parhamifar, L.; Christensen, C.; Kjaer, A.; Hansen, A.E.; Andresen, T.L. Accelerated blood clearance and hypersensitivity by PEGylated liposomes containing TLR agonists. *J. Control. Release* **2022**, *342*, 337–344. [\[CrossRef\]](#) [\[PubMed\]](#)

95. Barta, B.A.; Radovits, T.; Dobos, A.B.; Tibor Kozma, G.; Mészáros, T.; Berényi, P.; Facskó, R.; Fülöp, T.; Merkely, B.; Szébeni, J. Comirnaty-induced cardiopulmonary distress and other symptoms of complement-mediated pseudo-anaphylaxis in a hyperimmune pig model: Causal role of anti-PEG antibodies. *Vaccine X* **2024**, *19*, 100497. [\[CrossRef\]](#) [\[PubMed\]](#)

96. Yang, Q.; Lai, S.K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. *Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.* **2015**, *7*, 655–677. [\[CrossRef\]](#) [\[PubMed\]](#)

97. Klimek, L.; Novak, N.; Cabanillas, B.; Jutel, M.; Bousquet, J.; Akdis, C.A. Allergenic components of the mRNA-1273 vaccine for COVID-19: Possible involvement of polyethylene glycol and IgG-mediated complement activation. *Allergy* **2021**, *76*, 3307–3313. [\[CrossRef\]](#) [\[PubMed\]](#)

98. Zhu, X.; Luo, W.; Zhang, D.; Liu, R. An Assay for Immunogenic Detection of Anti-PEG Antibody. *ChemBioChem* **2024**, *25*, e202400316. [\[CrossRef\]](#)

99. Davis, E.; Caparco, A.A.; Jones, E.; Steinmetz, N.F.; Pokorski, J.K. Study of uricase-polynorbornene conjugates derived from grafting-from ring-opening metathesis polymerization. *J. Mater. Chem. B* **2024**, *12*, 2197–2206. [\[CrossRef\]](#)

100. Tsang, M.S.; Hou, T.; Chan, B.C.; Wong, C.K. Immunological Roles of NLR in Allergic Diseases and Its Underlying Mechanisms. *Int. J. Mol. Sci.* **2021**, *22*, 1507. [\[CrossRef\]](#)

101. Leven, T.; Coorevits, L.; Vandeboermet, M.; Tuyls, S.; Vanneste, H.; Santy, L.; Wets, D.; Proost, P.; Frans, G.; Devolder, D.; et al. Endotyping of IgE-Mediated Polyethylene Glycol and/or Polysorbate 80 Allergy. *J. Allergy Clin. Immunol. Pract.* **2023**, *11*, 3146–3160.

102. Dézsi, L.; Mészáros, T.; Kozma, G.; H-Velkei, M.; Oláh, C.Z.; Szabó, M.; Patkó, Z.; Fülop, T.; Hennies, M.; Szebeni, M.; et al. A naturally hypersensitive porcine model may help understand the mechanism of COVID-19 mRNA vaccine-induced rare (pseudo) allergic reactions: Complement activation as a possible contributing factor. *Geroscience* **2022**, *44*, 597–618. [\[CrossRef\]](#) [\[PubMed\]](#)

103. Ribak, Y.; Rubin, L.; Talmon, A.; Dranitzki, Z.; Shamriz, O.; Hershkowitz, I.; Tal, Y.; Hershko, A.Y. Administration of BNT162b2 mRNA COVID-19 vaccine to subjects with various allergic backgrounds. *Front. Immunol.* **2023**, *14*, 1172896. [\[CrossRef\]](#)

104. Gao, P.; Tang, K.; Lu, Y.; Wang, M.; Wang, W.; Wang, T.; Sun, Y.; Zhao, J.; Mao, Y. Increased expression of ficolin-1 is associated with airway obstruction in asthma. *BMC Pulm. Med.* **2023**, *23*, 470. [\[CrossRef\]](#)

105. Kokelj, S.; Östling, J.; Fromell, K.; Vanfleteren, L.E.G.W.; Olsson, H.K.; Nilsson Ekdahl, K.; Nilsson, B.; Olin, A.C. Activation of the Complement and Coagulation Systems in the Small Airways in Asthma. *Respiration* **2023**, *102*, 621–631. [\[CrossRef\]](#)

106. Khan, A.A.; Allemailem, K.S.; Almatroodi, S.A.; Almatroodi, A.; Rahmani, A.H. Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications. *3 Biotech* **2020**, *10*, 163. [\[CrossRef\]](#)

107. Münter, R.; Stavnsbjerg, C.; Christensen, E.; Thomsen, M.E.; Stensballe, A.; Hansen, A.E.; Parhamifar, L.; Kristensen, K.; Simonsen, J.B.; Larsen, J.B.; et al. Unravelling Heterogeneities in Complement and Antibody Opsonization of Individual Liposomes as a Function of Surface Architecture. *Small* **2022**, *18*, e2106529. [\[CrossRef\]](#)

108. Khunsuk, P.O.; Pongma, C.; Palaga, T.; Hoven, V.P. Zwitterionic Polymer-Decorated Lipid Nanoparticles for mRNA Delivery in Mammalian Cells. *Biomacromolecules* **2023**, *24*, 5654–5665. [\[CrossRef\]](#) [\[PubMed\]](#)

109. Gabrielaitis, D.; Zitkute, V.; Saveikyte, L.; Labutyte, G.; Skapas, M.; Meskys, R.; Casaitė, V.; Sasnauskiene, A.; Neniskytė, U. Nanotubes from bacteriophage tail sheath proteins: Internalisation by cancer cells and macrophages. *Nanoscale Adv.* **2023**, *5*, 3705–3716. [\[CrossRef\]](#) [\[PubMed\]](#)

110. Barbey, C.; Wolf, H.; Wagner, R.; Pauly, D.; Breunig, M. A shift of paradigm: From avoiding nanoparticulate complement activation in the field of nanomedicines to its exploitation in the context of vaccine development. *Eur. J. Pharm. Biopharm.* **2023**, *193*, 119–128. [\[CrossRef\]](#)

111. Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. *Adv. Drug Deliv. Rev.* **2022**, *180*, 114079. [\[CrossRef\]](#) [\[PubMed\]](#)

112. Chen, B.M.; Chen, E.; Lin, Y.C.; Tran, T.T.M.; Turjeman, K.; Yang, S.H.; Cheng, T.L.; Barenholz, Y.; Roffler, S.R. Liposomes with Low Levels of Grafted Poly (ethylene glycol) Remain Susceptible to Destabilization by Anti-Poly (ethylene glycol) Antibodies. *ACS Nano* **2024**, *18*, 22122–22138. [\[CrossRef\]](#)

113. Son, K.; Ueda, M.; Taguchi, K.; Maruyama, T.; Takeoka, S.; Ito, Y. Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. *J. Control. Release* **2020**, *322*, 209–216. [\[CrossRef\]](#) [\[PubMed\]](#)

114. Shimizu, T.; Lila, A.S.A.; Kitayama, Y.; Abe, R.; Takata, H.; Ando, H.; Ishima, Y.; Ishida, T. Peritoneal B Cells Play a Role in the Production of Anti-polyethylene Glycol (PEG) IgM against Intravenously Injected siRNA-PEGylated Liposome Complexes. *Biol. Pharm. Bull.* **2024**, *47*, 469–477. [\[CrossRef\]](#)

115. Zhang, X.; Pan, J.; Ye, X.; Chen, Y.; Wang, L.; Meng, X.; Chen, W.; Wang, F. Activation of CYP3A by Accelerated Blood Clearance Phenomenon Potentiates the Hepatocellular Carcinoma-Targeting Therapeutic Effects of PEGylated Anticancer Prodrug Liposomes. *Drug Metab. Dispos.* **2023**, *51*, 1651–1662. [\[CrossRef\]](#) [\[PubMed\]](#)

116. Ju, Y.; Lee, W.S.; Pilkington, E.H.; Kelly, H.G.; Li, S.; Selva, K.J.; Wragg, K.M.; Subbarao, K.; Nguyen, T.H.O.; Rowntree, L.C.; et al. Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine. *ACS Nano* **2022**, *16*, 11769–11780. [\[CrossRef\]](#) [\[PubMed\]](#)

117. Smirnov, A.; Daily, K.P.; Gray, M.C.; Ragland, S.; Werner, L.M.; Brittany Johnson, M.; Eby, J.C.; Hewlett, E.L.; Taylor, R.P.; Criss, A.K. Phagocytosis via complement receptor 3 enables microbes to evade killing by neutrophils. *J. Leukoc. Biol.* **2023**, *114*, 1–20. [\[CrossRef\]](#)

118. Zwarthoff, S.A.; Berends, E.T.M.; Mol, S.; Ruyken, M.; Aerts, P.C.; Józsi, M.; de Haas, C.J.C.; Rooijakkers, S.H.M.; Gorham, R.D., Jr. Functional Characterization of Alternative and Classical Pathway C3/C5 Convertase Activity and Inhibition Using Purified Models. *Front. Immunol.* **2018**, *9*, 1691. [[CrossRef](#)]

119. Laumonnier, Y.; Korkmaz, R.Ü.; Nowacka, A.A.; Köhl, J. Complement-mediated immune mechanisms in allergy. *Eur. J. Immunol.* **2023**, *53*, e2249979. [[CrossRef](#)] [[PubMed](#)]

120. Gutzmer, R.; Köther, B.; Zwirner, J.; Dijkstra, D.; Purwar, R.; Wittmann, M.; Werfel, T. Human plasmacytoid dendritic cells express receptors for anaphylatoxins C3a and C5a and are chemoattracted to C3a and C5a. *J. Investig. Dermatol.* **2006**, *126*, 2422–2429. [[CrossRef](#)] [[PubMed](#)]

121. Schäfer, B.; Piliponsky, A.M.; Oka, T.; Song, C.H.; Gerard, N.P.; Gerard, C.; Tsai, M.; Kalesnikoff, J.; Galli, S.J. Mast cell anaphylatoxin receptor expression can enhance IgE-dependent skin inflammation in mice. *J. Allergy Clin. Immunol.* **2013**, *131*, 541–548. [[CrossRef](#)]

122. Kammala, A.K.; Syed, M.; Yang, C.; Occhiuto, C.J.; Subramanian, H. A Critical Role for Na(+) / H(+) Exchanger Regulatory Factor 1 in Modulating FcεRI-Mediated Mast Cell Activation. *J. Immunol.* **2021**, *206*, 471–480. [[CrossRef](#)]

123. West, P.W.; Bahri, R.; Garcia-Rodriguez, K.M.; Sweetland, G.; Wileman, G.; Shah, R.; Montero, A.; Rapley, L.; Bulfone-Paus, S. Interleukin-33 Amplifies Human Mast Cell Activities Induced by Complement Anaphylatoxins. *Front. Immunol.* **2021**, *11*, 615236. [[CrossRef](#)] [[PubMed](#)]

124. Yasuda, M.; Tanaka, Y.; Bando, K.; Sugawara, S.; Mizuta, K. Lipopolysaccharide Priming Exacerbates Anaphylatoxin C5a-Induced Anaphylaxis in Mice. *Biol. Pharm. Bull.* **2023**, *46*, 432–439. [[CrossRef](#)] [[PubMed](#)]

125. Zhang, T.; Wu, K.Y.; Ma, N.; Wei, L.L.; Garstka, M.; Zhou, W.; Li, K. The C5a/C5aR2 axis promotes renal inflammation and tissue damage. *JCI Insight* **2020**, *5*, e134081. [[CrossRef](#)] [[PubMed](#)]

126. Hu, X.; Li, X.; Hu, C.; Qin, L.; He, R.; Luo, L.; Tang, W.; Feng, J. Respiratory Syncytial Virus Exacerbates OVA-mediated asthma in mice through C5a-C5aR regulating CD4(+)T cells Immune Responses. *Sci. Rep.* **2017**, *7*, 15207. [[CrossRef](#)]

127. Karp, C.L.; Grupe, A.; Schadt, E.; Ewart, S.L.; Keane-Moore, M.; Cuomo, P.J.; Köhl, J.; Wahl, L.; Kuperman, D.; Germer, S.; et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. *Nat. Immunol.* **2000**, *1*, 221–226. [[CrossRef](#)] [[PubMed](#)]

128. Rönnau, A.C.; Wulferink, M.; Gleichmann, E.; Unver, E.; Ruzicka, T.; Krutmann, J.; Grewe, M. Anaphylaxis to polyvinylpyrrolidone in an analgesic preparation. *Br. J. Dermatol.* **2000**, *143*, 1055–1058. [[CrossRef](#)] [[PubMed](#)]

129. Liccioli, G.; Mori, F.; Barni, S.; Pucci, N.; Novembre, E. Anaphylaxis to Polyvinylpyrrolidone in Eye Drops Administered to an Adolescent. *J. Investig. Allergol. Clin. Immunol.* **2018**, *28*, 263–265. [[CrossRef](#)]

130. Baysal, S.; Anil, H.; Harmancı, K. A Case Report and Pediatric Literature Review: Povidone as a Rare Cause of Anaphylaxis in Children. *Pediatr. Allergy Immunol. Pulmonol.* **2024**, *37*, 56–59. [[CrossRef](#)] [[PubMed](#)]

131. Bakhsh, R.; Dairi, K.; Almadabgy, E.; Albiladi, A.; Gamal, L.; Almatrafi, D.; AlShariff, F.; Alsefri, A. New Onset of Neuro-Sjögren's Syndrome Nine Months After the Third COVID-19 Vaccine Dose: A Case Report. *Cureus* **2024**, *16*, e69562. [[CrossRef](#)]

132. Cahuapaza-Gutierrez, N.L. Systemic lupus erythematosus following COVID-19 vaccination. A systematic review of case reports and case series. *Lupus* **2024**, *33*, 375–386. [[CrossRef](#)] [[PubMed](#)]

133. Bruusgaard-Mouritsen, M.A.; Jensen, B.M.; Poulsen, L.K.; Duus Johansen, J.; Garvey, L.H. Optimizing investigation of suspected allergy to polyethylene glycols. *J. Allergy Clin. Immunol.* **2022**, *149*, 168–175. [[CrossRef](#)] [[PubMed](#)]

134. Liu, M.; Zhao, D.; Yan, N.; Li, J.; Zhang, H.; Liu, M.; Tang, X.; Liu, X.; Deng, Y.; Song, Y.; et al. Evasion of the accelerated blood clearance phenomenon by branched PEG lipid derivative coating of nanoemulsions. *Int. J. Pharm.* **2022**, *612*, 121365. [[CrossRef](#)]

135. Sui, D.; Wang, Y.; Sun, W.; Wei, L.; Li, C.; Gui, Y.; Qi, Z.; Liu, X.; Song, Y.; Deng, Y. Cleavable-Branched Polymer-Modified Liposomes Reduce Accelerated Blood Clearance and Enhance Photothermal Therapy. *ACS Appl. Mater. Interfaces* **2023**, *15*, 32110–32120. [[CrossRef](#)] [[PubMed](#)]

136. McSweeney, M.D.; Shen, L.; DeWalle, A.C.; Joiner, J.B.; Ciociola, E.C.; Raghuwanshi, D.; Macauley, M.S.; Lai, S.K. Pre-treatment with high molecular weight free PEG effectively suppresses anti-PEG antibody induction by PEG-liposomes in mice. *J. Control. Release* **2021**, *329*, 774–781. [[CrossRef](#)] [[PubMed](#)]

137. Shen, L.; Li, Z.; Ma, A.; Cruz-Teran, C.; Talkington, A.; Shipley, S.T.; Lai, S.K. Free PEG Suppresses Anaphylaxis to PEGylated Nanomedicine in Swine. *ACS Nano* **2024**, *18*, 8733–8744. [[CrossRef](#)]

138. Hu, Y.; Hou, Y.; Wang, H.; Lu, H. Polysarcosine as an alternative to PEG for therapeutic protein conjugation. *Bioconjug. Chem.* **2018**, *29*, 2232–2238. [[CrossRef](#)] [[PubMed](#)]

139. Hu, M.; Taguchi, K.; Matsumoto, K.; Kobatake, E.; Ito, Y.; Ueda, M. Polysarcosine-Coated liposomes attenuating immune response induction and prolonging blood circulation. *J. Colloid Interface Sci.* **2023**, *651*, 273–283. [[CrossRef](#)]

140. Xia, J.; Chen, C.; Dong, M.; Zhu, Y.; Wang, A.; Li, S.; Zhang, R.; Feng, C.; Jiang, X.; Xu, X.; et al. Ginsenoside Rg3 endows liposomes with prolonged blood circulation and reduced accelerated blood clearance. *J. Control. Release* **2023**, *364*, 23–36. [[CrossRef](#)] [[PubMed](#)]

141. Wang, D.; Toyofuku, W.M.; Chen, A.M.; Scott, M.D. Induction of immunotolerance via mPEG grafting to allogeneic leukocytes. *Biomaterials* **2011**, *32*, 9494–9503. [\[CrossRef\]](#) [\[PubMed\]](#)

142. Wu, J.; Lu, S.; Zheng, Z.; Zhu, L.; Zhan, X. Modification with polysialic acid-PEG copolymer as a new method for improving the therapeutic efficacy of proteins. *Prep. Biochem. Biotechnol.* **2016**, *46*, 788–797. [\[CrossRef\]](#) [\[PubMed\]](#)

143. Qelliny, M.R.; Shimizu, T.; Elsadek, N.E.; Emam, S.E.; Takata, H.; Fathalla, Z.M.A.; Hussein, A.K.; Khaled, K.A.; Ando, H.; Ishima, Y.; et al. Incorporating Gangliosides into PEGylated Cationic Liposomes that Complexed DNA Attenuates Anti-PEG Antibody Production but Not Anti-DNA Antibody Production in Mice. *Mol. Pharm.* **2021**, *18*, 2406–2415. [\[CrossRef\]](#) [\[PubMed\]](#)

144. van den Hoven, J.M.; Nemes, R.; Metselaar, J.M.; Nuijen, B.; Beijnen, J.H.; Storm, G.; Szelenyi, J. Complement activation by PEGylated liposomes containing prednisolone. *Eur. J. Pharm. Sci.* **2013**, *49*, 265–271. [\[CrossRef\]](#)

145. Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. *N. Engl. J. Med.* **2020**, *383*, 2603–2615. [\[CrossRef\]](#)

146. La Gualana, F.; Maiorca, F.; Marrapodi, R.; Villani, F.; Miglionico, M.; Santini, S.A.; Pulcinelli, F.; Gragnani, L.; Piconese, S.; Fiorilli, M.; et al. Opposite Effects of mRNA-Based and Adenovirus-Vectored SARS-CoV-2 Vaccines on Regulatory T Cells: A Pilot Study. *Biomedicines* **2023**, *11*, 511. [\[CrossRef\]](#)

147. Li, P.Y.; Bearoff, F.; Zhu, P.; Fan, Z.; Zhu, Y.; Fan, M.; Cort, L.; Kambayashi, T.; Blankenhorn, E.P.; Cheng, H. PEGylation enables subcutaneously administered nanoparticles to induce antigen-specific immune tolerance. *J. Control. Release* **2021**, *331*, 164–175. [\[CrossRef\]](#) [\[PubMed\]](#)

148. Xu, X.; Wang, X.; Liao, Y.P.; Luo, L.; Xia, T.; Nel, A.E. Use of a Liver-Targeting Immune-Tolerogenic mRNA Lipid Nanoparticle Platform to Treat Peanut-Induced Anaphylaxis by Single- and Multiple-Epitope Nucleotide Sequence Delivery. *ACS Nano* **2023**, *17*, 4942–4957. [\[CrossRef\]](#) [\[PubMed\]](#)

149. Pfeil, J.; Simonetti, M.; Lauer, U.; Volkmer, R.; von Thülen, B.; Durek, P.; Krähmer, R.; Leenders, F.; Hamann, A.; Hoffmann, U. Tolerogenic Immunomodulation by PEGylated Antigenic Peptides. *Front. Immunol.* **2020**, *11*, 529035. [\[CrossRef\]](#)

150. Krienke, C.; Kolb, L.; Diken, E.; Streuber, M.; Kirchhoff, S.; Bükür, T.; Akilli-Öztürk, Ö.; Kranz, L.M.; Berger, H.; Petschenka, J.; et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. *Science* **2021**, *371*, 145–153. [\[CrossRef\]](#)

151. Pardi, N.; Krammer, F. mRNA vaccines for infectious diseases—Advances, challenges and opportunities. *Nat. Rev. Drug Discov.* **2024**, *23*, 838–861. [\[CrossRef\]](#) [\[PubMed\]](#)

152. Al Rahbani, G.K.; Woopen, C.; Dunsche, M.; Proschmann, U.; Ziemssen, T.; Akgün, K. SARS-CoV-2-Specific Immune Cytokine Profiles to mRNA, Viral Vector and Protein-Based Vaccines in Patients with Multiple Sclerosis: Beyond Interferon Gamma. *Vaccines* **2024**, *12*, 684. [\[CrossRef\]](#)

153. Sittplangkoon, C.; Alameh, M.G.; Weissman, D.; Lin, P.J.C.; Tam, Y.K.; Prompetchara, E.; Palaga, T. mRNA vaccine with unmodified uridine induces robust type I interferon-dependent anti-tumor immunity in a melanoma model. *Front. Immunol.* **2022**, *13*, 983000. [\[CrossRef\]](#) [\[PubMed\]](#)

154. Cao, W.; Xia, T. RNA lipid nanoparticles induce immune tolerance to treat human diseases. *Med. Rev.* **2023**, *3*, 180–183. [\[CrossRef\]](#)

155. Wang, Z.; Jacobus, E.J.; Stirling, D.C.; Krumm, S.; Flight, K.E.; Cunliffe, R.F.; Mottl, J.; Singh, C.; Mossop, L.G.; Santiago, L.A.; et al. Reducing cell intrinsic immunity to mRNA vaccine alters adaptive immune responses in mice. *Mol. Ther. Nucleic Acids* **2023**, *34*, 102045. [\[CrossRef\]](#) [\[PubMed\]](#)

156. Karikó, K.; Muramatsu, H.; Ludwig, J.; Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. *Nucleic Acids Res.* **2011**, *39*, e142. [\[CrossRef\]](#) [\[PubMed\]](#)

157. Loomis, K.H.; Lindsay, K.E.; Zurla, C.; Bhosle, S.M.; Vanover, D.A.; Blanchard, E.L.; Kirschman, J.L.; Bellamkonda, R.V.; Santangelo, P.J. In Vitro Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. *Bioconjug. Chem.* **2018**, *29*, 3072–3083. [\[CrossRef\]](#)

158. Yuan, X.; Wu, Z.; Guo, J.; Luo, D.; Li, T.; Cao, Q.; Ren, X.; Fang, H.; Xu, D.; Cao, Y. Natural Wood-Derived Macroporous Cellulose for Highly Efficient and Ultrafast Elimination of Double-Stranded RNA from In Vitro-Transcribed mRNA. *Adv. Mater.* **2024**, *36*, e2303321. [\[CrossRef\]](#) [\[PubMed\]](#)

159. Català, M.; Mercadé-Besora, N.; Kolde, R.; Trinh, N.T.H.; Roel, E.; Burn, E.; Rathod-Mistry, T.; Kostka, K.; Man, W.Y.; Delmestri, A.; et al. The effectiveness of COVID-19 vaccines to prevent long COVID symptoms: Staggered cohort study of data from the UK, Spain, and Estonia. *Lancet Respir. Med.* **2024**, *12*, 225–236. [\[CrossRef\]](#) [\[PubMed\]](#)

160. Jung, S.W.; Jeon, J.J.; Kim, Y.H.; Choe, S.J.; Lee, S. Long-Term risk of autoimmune diseases after mRNA-based SARS-CoV-2 vaccination in a Korean, nationwide, population-based cohort study. *Nat. Commun.* **2024**, *15*, 6181. [\[CrossRef\]](#) [\[PubMed\]](#)

161. Li, X.; Gao, L.; Tong, X.; Chan, V.K.Y.; Chui, C.S.L.; Lai, F.T.T.; Wong, C.K.H.; Wan, E.Y.F.; Chan, E.W.Y.; Lau, K.K.; et al. Autoimmune conditions following mRNA (BNT162b2) and inactivated (CoronaVac) COVID-19 vaccination: A descriptive cohort study among 1.1 million vaccinated people in Hong Kong. *J. Autoimmun.* **2022**, *130*, 102830. [\[CrossRef\]](#) [\[PubMed\]](#)

162. Feng, Z.; Zhang, X.; Zhou, J.; Li, Q.; Chu, L.; Di, G.; Xu, Z.; Chen, Q.; Wang, M.; Jiang, X.; et al. An in vitro-transcribed circular RNA targets the mitochondrial inner membrane cardiolipin to ablate EIF4G2⁺/PTBP1⁺ pan-adenocarcinoma. *Nat. Cancer* **2024**, *5*, 30–46. [[CrossRef](#)] [[PubMed](#)]
163. McCallen, J.; Prybylski, J.; Yang, Q.; Lai, S.K. Cross-Reactivity of Select PEG-Binding Antibodies to Other Polymers Containing a C-C-O Backbone. *ACS Biomater. Sci. Eng.* **2017**, *3*, 1605–1615. [[CrossRef](#)]
164. Li, M.; Huang, Y.; Wu, J.; Li, S.; Mei, M.; Chen, H.; Wang, N.; Wu, W.; Zhou, B.; Tan, X.; et al. A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. *Mater. Horiz.* **2023**, *10*, 466–472. [[CrossRef](#)]
165. He, X.; Payne, T.J.; Takanashi, A.; Fang, Y.; Kerai, S.D.; Morrow, J.P.; Al-Wassiti, H.; Pouton, C.W.; Kempe, K. Tailored Monoacyl Poly (2-oxazoline)- and Poly (2-oxazine)-Lipids as PEG-Lipid Alternatives for Stabilization and Delivery of mRNA-Lipid Nanoparticles. *Biomacromolecules* **2024**, *25*, 4591–4603. [[CrossRef](#)] [[PubMed](#)]
166. Hassanel, D.N.B.P.; Pilkington, E.H.; Ju, Y.; Kent, S.J.; Pouton, C.W.; Truong, N.P. Replacing poly (ethylene glycol) with RAFT lipopolymers in mRNA lipid nanoparticle systems for effective gene delivery. *Int. J. Pharm.* **2024**, *665*, 124695. [[CrossRef](#)] [[PubMed](#)]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.