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Abstract: Messenger RNA (mRNA)-based therapeutics have shown remarkable progress
in the treatment and prevention of diseases. Lipid nanoparticles (LNPs) have shown great
successes in delivering mRNAs. After an mRNA-LNP vaccine enters a cell via an endo-
some, mRNA is translated into an antigen, which can activate adaptive immunity. mRNAs
can bind to various pattern recognition receptors (PRRs), including toll-like receptors
(TLRs), and increase the production of inflammatory cytokines. This review summarizes
mechanisms of innate immunity induced by mRNAs. Polyethylene glycol (PEG) has been
employed as a component of the mRNA-LNP vaccine. PEGylated nanoparticles display
enhanced stability by preventing aggregation of particles. However, PEGylation can cause
adverse reactions, including blood clearance (ABC) of nanoparticles via complement activa-
tion and anaphylaxis. Mechanisms of PEG-induced ABC phenomenon and anaphylaxis are
presented and discussed. There have been studies aimed at reducing immune responses
associated with PEG to make safe and effective vaccines. Effects of modifying or replacing
PEG in reducing immune responses associated with PEGylated nanoparticles are also
discussed. Modifying mRNA can induce immune tolerance, which can prevent hypersensi-
tivity reactions induced by PEGylated mRNA-LNP vaccines. Current progress of immune
tolerance induction in association with mRNA-LNP is also summarized. This review might
be helpful for developing safe and effective PEGylated mRNA-LNP vaccines.

Keywords: ABC phenomenon; allergies; complement; immune tolerance; innate immunity;
mRNA-LNPs; PEG

1. Immune Response Induced by mRNA Vaccines: Antigen Translation

Messenger RNA (mRNA) has been widely applied in therapies, including protein
replacement therapies and cancer immunotherapies [1-3]. Successful development of
COVID-19 vaccines has greatly contributed to the advancement of mRNA technology.

mRNA can be produced by in vitro transcription (IVT). It can then be translated into
functional proteins. mRNA vaccines make it possible to mount an immune response
without ever exposing to pathogens. mRNA vaccines show various advantages, including
rapid preparation, reduced contamination, no induction of insertional mutagenesis, and
high biodegradability [4]. These advantages make it possible to develop mRNA-based
personalized vaccines. mRNAs have shown translational efficiency, reliable stability, and
controlled immunogenicity [5]. It has been shown that mRNAs can bind to receptors
and signaling pathways such as toll-like receptors (TLRs) and the JAK-STAT pathway
and promote adaptive immune response [6]. Induction of adaptive immunity involves
activation of T cells and the generation of specific antibodies.
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Non-replicating mRNA (NRM) and virally generated, self-amplifying RNA (SAM)
are now being investigated as vaccines. SAMs encoding a viral replication machinery
allow for abundant production of antigen of interest [7]. mRNA structures include 5 and
3/ untranslated structure regions (UTRs) [8]. 5’ UTR can be optimized to enhance trans-
lational efficiency [9]. Replacing ORF coding for viral structure proteins with viral RNA-
dependent RNA polymerase can result in cytoplasmic expansion of the replicon struc-
ture. Refining 5’ cap structure, 3’ poly (A) tail, and codons can enhance the stability of
mRNA [10,11].

mRNA vaccines encoding proteins of interest can be introduced into the cytoplasm
of host cells, where they can be expressed into antigens [12]. Internalization of mRNA by
antigen-presenting cells (APCs) can be made easier by performing nucleotide modifications
and codon optimizations [5]. A single vaccination of mRNA can produce many antigens and
induce major histocompatibility complex (MHC)-mediated T cell responses and production
of neutralizing antibodies [13]. APCs can internalize the mRNA vaccine via endocytosis.
mRNASs can escape endosomes and access the cytoplasm for translation into proteins of
interest. The proteasome complex can break down intracellular proteins into antigenic
peptides. Antigenic peptides are presented to CD4* T cells or CD8* T cells via MHC
molecules on surfaces of APCs. Antigenic peptides can induce differentiation of CD4* T
cells into effector T cells, including T helper (TH) cells and T follicular helper (TFH) cells.
TFH cells can promote germinal center reactions to induce the production of neutralizing
antibodies. Activated CD8" T cells by MHC-I/Peptide can exert cytotoxic effects. mRNAs
can produce extracellular or cell surface proteins that can be recognized by cognate B cells
and induce the production of neutralizing antibodies. Targeted delivery and endosomal
escape remain challenging issues for developing mRNA-based therapy. Figure 1 shows
that proteins encoded by mRNA can induce both innate immunity and adaptive immunity.
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Figure 1. Inmune responses induced by mRNA vaccines. mRNA-LNP vaccine is endocytosed by
antigen presenting cells. Following endosomal escape, mRNAs are then translated into corresponding
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proteins. Proteins undergo proteasomal degradation. Peptides are then presented on MHC-I to
induce activation of CD8" T cells. Activated CD8* T cells can secrete IFNy and TNF-«. Activated
CD8" T cells can kill tumor cells by granzyme B (GzmB). Secreted proteins are recognized and
engulfed by antigen presenting cells such as B cells. Antigenic peptides are presented on the MHC-II
of B cells to induce activation of CD4" T cells. Activated CD4* T cells, such as TH2 cells and TFH
cells, can activate B cells to induce production of antigen-specific antibodies. Arrows denote the
direction of reaction. TFH denotes follicular T helper cells. IVT denotes in vitro transcription.

2. Structure of mRNA-LNPs

Lipid nanoparticles (LNPs), a leading non-viral delivery system, can efficiently co-
deliver vaccines and immune adjuvants to lymphoid organs [14]. LNPs have shown
successes as delivery vehicles for small molecules such as mRNAs and siRNAs [15,16].
Negative charges and toxicity of RNAs hinder their efficient uptake by host cells. LNP-
encapsulation has been employed to generate safe and effective vaccines. LNPs can enhance
the stability of messenger RNA and facilitate endosomal escape [17]. Enhanced half-life
stability of LNPs can promote an enhanced permeation and retention (EPR) effect that can
result in accumulation of LNPs in cancer tissues [18].

LNPs mostly contain four kinds of lipids: (1) cationic or ionizable cationic lipids such
as N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA); (2) phos-
pholipids such as dipalmitoylphosphatidylcholine (DPPC); (3) lipid-anchored polyethylene
glycol (PEG) such as DMG-PEG2000; and (4) cholesterol [19]. Ionizable liposomes are
neutral in the bloodstream. They display minimal off-target interactions with anionic cell
membranes of blood cells [20]. In an endosomal environment, ionizable lipids undergo
protonation on the liposome surface, which can promote membrane disruption and endo-
somal escape of mRNA. PEG-lipids can enhance the stability of mRNA-LNP by decreasing
particle aggregation without causing changes in mitochondrial metabolism in neuroblas-
toma cells [21]. Decreasing PEG molarity or replacing PEG structures can increase protein
expression by increasing the size of mRNA-LNP [22]. Large nanoparticles that contain
more lipids and mRNAs can promote high endosomal escape and provide more mRNA
for protein production. PEG molarity might affect innate and/or adaptive immunity by
regulating the production of antigenic epitopes after vaccination with an mRNA-LNP
vaccine. It is also probable that decreasing PEG molarity can change the physicochemical
properties of nanoparticles to affect protein expression.

3. Induction of Immunity by Lipid Nanoparticles

mRNA-LNPs can act as an immune adjuvant based on the following findings: (1) mR-
NAs can be sensed by Toll-like receptor (TLR), melanoma differentiation-associated pro-
tein 5 (MDADS), and nucleotide-binding domain, leucine-rich—containing family, pyrin
domain—containing-3 (NLRP3) [23-25]; (2) mRNA-LNPs can increase the production of in-
flammatory cytokines including IL-1«, IL-13, and IFN-f3, and IFN-y through RNA sensing
receptors [26-29]; and (3) mRNA-LNPs can promote adaptive immunity involving activa-
tion of T cells and germinal center (GC) B-cell responses [30-32]. BNT162b2 mRNA-LNP
vaccine can increase levels of proinflammatory cytokines including IL-2, CCL2, CCL4, and
CCL5 [33]. The BNT162b2 mRNA-LNP vaccine can also induce CD8* T cell responses via
type I interferon (IFN)-dependent MDAS signaling [33]. In addition, ionizable lipids can
activate the TLR2, TLR4, and NLRP3 inflammasome [34,35]. Cationic or ionizable cationic
lipids and PEGylated lipids of the mRNA-LNP-COVID19 vaccine can also induce acute
inflammatory syndrome by increasing the secretion of cytokines, including IL-1&, IFN-y,
IL-1f3, and IL-8 by activating the complement system [34,36,37].
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4. Innate RNA Sensing

PRRs are known to mediate innate immune responses [38]. PRRs are expressed on
APCs such as monocytes and dendritic cells (DCs) [39]. PRRs include TLRs, leucine-
rich repeat-containing receptors (NLRs), and retinoic acid-inducible gene 1 (RIG-I) like
receptors [38,40]. TLRs are crucial mediators and regulators of host immunity [34].

Nucleic acids can act as molecular patterns [38]. Sensing IVT mRNA by endsomal
TLR7/8 [41] can activate the myeloid differentiation factor (MyD) 88 pathway to initi-
ate typel IFN pathways [41,42]. TLR7/8 agonist can induce production of typel IFN
and IL-6 and adaptive immune responses [41]. Anticancer mRNA-LNP vaccines can
trigger TLR4 [43], TLR? [44], and can be stimulators of IFN gene 16 (STING16) signal-
ing pathways [45]. RNA sensing by PRRs can also activate the IFN pathway, which in
turn can increase the production of proinflammatory cytokines, resulting in the activation
of APCs [46]. mRNA sensing by TLRs (TLR3, TLR7, and TLR8) can activate the innate
immune system to increase production of proinflammatory cytokines [47]. Endosomal
TLRs, specifically TLR3, TLR7, and TLRS, can act as viral RNA PRRs. Single-stranded
RINA (ssRNA) can bind to TLR-7 and TLR-8 to activate the MyD88 pathway and induce
production of the germinal center B cell-dependent IgG antibody [48]. TLR7 can activate
NEF-«B, MyD88, IRF7 pathways and increase secretion of CCL2, CXCL10, IL-1f3, IL-6, IL-§,
and type I IFNs [49-51]. TLR-3 can sense double-stranded RNA (dsRNA) and activate the
TRIF (TIR-domain containing protein inducing type 1 IFN) pathway while decreasing the
expression of adenosine deaminase RNA specific 1 (ADAR1) [52]. TLR-3 can also activate
IRF3 and NF-kB to increase production of proinflammatory cytokines and type I IFN [53].
LNP-poly(I:C) can activate lysosomal TLR3 in human and mouse fibroblasts [54].

Viral infection can activate RNA sensors, including RIG-I-like receptors (RLRs), TLRs,
protein kinase R (PKR), and ADART1 [55]. RLRs can sense cytosolic RNA and act as sensors
of the BNT162b2 vaccine [33]. Cytosolic RLRs and MDAS5 along with mitochondrial antivi-
ral signaling protein (MAVS) can increase production of proinflammatory cytokine [56,57].
DsRNA can activate MAVS and STING-mediated signaling pathways in response to ioniz-
ing radiation [56]. MDAS5 and RLR can increase the secretion of proinflammatory cytokines
by activating IFN response factor 3 (IRF3) and NF-kB [57]. Understanding mechanisms
of innate immunity mediated by the IFN pathway is needed to develop safe and effec-
tive mRNA-LNP vaccines. Figure 2 shows that RNA sensing by innate PRRs can induce
production of proinflammatory cytokines.
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Figure 2. Innate immunity and translational inhibition induced by mRNA. (A) Endosomal TLR
(TLR3, 7, or 8) can bind to ssRNA or dsRNA. Endosomal TLR7/8 can increase the production of
type I IFNs and various proinflammatory cytokines including IL-6, CCL2, and CXCL10 by activating
MYD88-NF-kB signaling. DsRNA produced during IVT can activate PKR or OAS pathway, resulting
in degradation of mRNA. Endosomal TLR3 can bind to dsRNA and activate TRIF pathway. RLRs
and MDAS5 can bind to cytosolic RNAs and increase production of proinflammatory cytokines
by activating IRF3 and N-kB. (B) DsRNA can bind to PKR and OAS. PKR can suppress mRNA
translation by inducing phosphorylation of elF2. OAS can activate RNase L, which in turn can induce
translational arrest. Hollow arrows denote the direction of reaction. IRAK, interleukin-1-receptor-
associated kinase; MAVS, mitochondrial antiviral-signaling protein; TAB, Mitogen-activated protein
kinase kinase kinase 7-interacting protein 1; TAK, mitogen-activated protein kinase kinase kinase 7;
TRAF6, tumor necrosis factor receptor-associated factor 6; TRAM, translocating- chain-associated
membrane protein; ZAK, mixed lineage kinase. Hollow arrows denote the direction of reaction. T
bars denote inhibition of reaction.

5. Translational Inhibition of mRNA by dsRNA

Innate RNA sensors can decrease the expression of antigen from mRNA by activating
ribonuclease L (RNase L) that cleaves single stranded RNA (ssRNA) via JNK and p38
MAPK pathways [58]. RNase L can decrease the translation of stress-responsive genes by
inducing ribosome stalling through activation of human leucine zipper and sterile alpha
motif-containing kinase (ZAK) [58]. Double stranded RNA (dsRNA) produced during IVT
can restrict mRNA translation by activating PKR and NF-kB [59,60]. PKR and RIG-1 are
known to recognize different types of RNA to interfere with translation [61-63]. PKR can
induce phosphorylation of eukaryotic initiation factor 2 (eIF2), which in turn can suppress
mRNA translation [63,64].
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DsRNA can also trigger innate immunity via oligoadenylate synthetase 3 (OAS) [65].
Upon detecting viral dsRNA, OAS3 can activate RNase L [66], which cleaves both cellular
and viral RNAs, further triggering RLR signaling to increase the production of proin-
flammatory cytokines [67]. RNA-binding protein E3 (E3L) can bind to PKR and inhibit
activation of PKR [68]. Thus, E3L can be employed to prevent translational inhibition by
dsRNA. This can be used to develop effective mRNA-LNP vaccine. Figure 2 describes the
mechanism of RNA degradation by PKR and OAS. To make effective mRNA-LNP vaccines,
it is necessary to purify IVT mRNA without dsRNA.

6. Effects of Modifications of mRNAs on Immunogenicity and Translation

mRNA transfection can stimulate TLR3 and TLR7 and induce IFN-f expression in
human and mouse fibroblasts [69]. Unmodified mRNA-LNP vaccines can activate innate
immune responses that often lead to cytokine storms. Ss RNA 40, a synthetic mimic of
SARS-CoV-2 RNA, can increase the expression of proinflammatory cytokines in monocyte-
derived dendritic cells (MDDCs) via TLR8 [70]. Inositol requiring enzyme 1 o (IRE1«x)
inhibitor MKC8866 can prevent ssRNA40 from increasing the production of proinflamma-
tory cytokines [70]. Thus, the TLR8-IRE1x system might serve as a target to control the
cytokine storm associated with COVID-19 mRNA-LNP vaccines. TLR signaling can activate
IRF3 to induce production of proinflammatory cytokines including IFN [71]. DsRNA can
increase the expression of IFN stimulated genes (ISGs) by activating IRF3 and NF-«B [57].

Nucleoside-modified mRNA-LNP vaccines might abrogate innate immunity critical
for inducing adaptive immunity. Therefore, it is advisable to modify components of mRNA-
LNP vaccines. Post-transcriptional modifications such as RNA pseudouridylation can
affect gene expression and regulate various biological processes [72]. Replacing uridine
with pseudouridine (¥) or other derivatives such as N1-methylpseudouridine (m1),
2-thiouridine, 5-methyluridine, and 5-methylcytidine can prevent endosomal TLR3 and
TLR7/8 and cytosolic RIG-1 from recognizing mRNAs and increasing the production
of IEN-f [69,73]. Thus, modifications of mRNAs can reduce innate immunity induced
by mRNA-LNP vaccines. RNA-editing enzyme ADAR1 (adenosine deaminase acting
on RNA) can inhibit immune checkpoint blocker (ICB) responsiveness by suppressing
immunogenic dsRNAs arising from dysregulated expression of endogenous retroviral
elements (EREs) [74].

Pseudouridylation of alpha ketoglutarate-dependent dioxygenase (ALKBH3), a tumor
suppressor gene, can enhance the translation of ALKBH3 and reduce tumor growth [72].
Chemical modification of nucleotides can enhance translation levels by preventing innate
sensors from recognizing IVT mRNA [75,76]. Enhanced protein translation efficiency can
be attributed to stability of pseudouridine-modified IVT mRNAs resulting from a reduced
activity of RNA-dependent PKR [75,76].

7. PEGylated mRNA-LNPs Cause Hypersensitivity Reactions, Allergies,
and Complement Activation-Related Pseudoallergy (CARPA)

Safe and effective vaccines can stimulate the innate immune system and prime adap-
tive immune responses. However, immune-related adverse effects can arise because of
immunological actions induced by these vaccines. Stimulation of RNA sensors such
as TLRs can induce cytokine storm, airway infiltration of immune cells, and activation
of mast cells [77]. It has been shown that mRINA COVID-19 vaccines can cause aller-
gies [78,79]. COVID-19 can activate mast cell-derived proteases and increase levels of
eosinophil-associated mediators based on assays employing sera and lung tissues of
COVID-19 patients [77]. The BNT162b2 COVID-19 vaccine can exacerbate asthma by
enhancing sensitivity to histamines in a human ex vivo model [80]. Phospholipase A2IIA



Vaccines 2025, 13, 14

7 of 22

activity is correlated with severity of COVID-19 vaccine [81]. The COVID-19 vaccine can
increase levels of lysophosphatidic acid (LPA) and platelet activating factor (PAF) by phos-
pholipase A2IIA [81]. It is well known that PAF mediates allergic reactions via the PAF
receptor [82].

PEGylated proteins along with complete Freund’s adjuvant can induce production of
PEG-specific antibodies [83]. PEG displays immunogenicity when it is used as an excipient
in LNPs [84]. PEG can cause anaphylaxis in some drug reactions [85]. High molecular
weight PEGs are known to cause allergic reactions. In animals, anti-PEG immunity consists
of mostly the anti-PEG IgM response. PEGylated mRNA-LNP vaccines can induce the
production of anti-PEG IgG, anti-PEG IgM, and anti-PEG IgE [86-88]. COVID-19 mRNA-
LNP vaccines (Comirnaty and Spikevax) can induce hypersensitivity reactions (HSRs) or
anaphylaxis by increasing levels of anti-PEG IgG/IgM [86]. Anti-PEG antibodies can be
produced without prior exposure to PEGylated nanoparticles [89]. Anti-PEG Abs have
been shown to be correlated with a reduced clinical efficacy of PEGylated therapeutics due
to the presence of anti-PEG antibodies.

Anti-PEG antibodies on the surface of PEGylated nanoparticles can induce HSRs
such as hypothermia and hypotension by activating Fcy receptors on innate immune
cells [90]. TLRs play a key role in allergic airway inflammatory responses, including airway
infiltration of immune cells, increased levels of Th2 cytokines, and metaplasia of lung
epithelial cells [91]. The expression levels of inflammation-related genes are decreased in
TLR2 KO cells compared to those in wild type cells [91]. The TLR2-ERK signaling pathway
can mediate allergic airway inflammation by regulating expression of Gal-3 [92]. The
PEGylated siRNA-lipoplex can increase production of anti-PEG IgM by activating the TLR7
signaling pathway [93]. PEGylated liposomes containing TLR agonists can cause acute
HSRs by inducing high levels of the anti-PEG antibody [94]. Thus, TLR signaling pathways
might be responsible for the induction of allergic symptoms by PEG-mRNA-LNP vaccines.

People who have high levels of anti-PEG Ab in their blood can develop HSRs/anaphylaxis
in response to PEGylated vaccines [95]. PEGylated proteins can induce production of anti-
PEG antibody by activating T cells responses, while PEGylated liposomes functionina T
cell-independent manner [96]. PEG has been implicated in pseudoallergic or anaphylactoid
reactions via complement activation-related pseudoallergy (CARPA) [97]. Several types
of anti-PEG antibodies are known to contribute to HSRs and premature drug release
from PEGylated carriers [95,98,99]. Comirnaty, a PEGylated mRNA vaccine, can induce
production of anti-PEG IgG and anti-PEG IgM antibodies, which in turn can activate the
complement system to cause pseudoanaphylaxis [95]. Anti-PEG IgG, but not anti-PEG
IgM, can induce symptoms of HSRs including hypothermia, altered lung function, and
hypotension after administration of PEGylated liposomal doxorubicin (PLD) in C57BL/6
and non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice [90]. Anti-
PEG IgG can cause HSRs through Fcy receptors independent of complements [90]. Immune
cells including basophils, monocytes, neutrophils, and mast cells can mediate anti-PEG
IgG-mediated HSRs by recognizing mRNA-LNPs through PRRs such as nucleotide-binding
oligomerization domain (NOD)-like receptors (NLR) [100]. This suggests that pathogenesis
of allergic diseases involves both innate and adaptive immune responses. Anti-PEG IgE
can also mediate HSRs induced by PEGylated nanoparticles [101].

Immunization with the mRNA-LNP COVID-19 vaccine can induce anaphylaxis, like
CARPA, following their first or subsequent vaccinations [102,103]. CARPA results from
elevated levels of complement C3a and sC5b-C9 [102]. Unlike other IgE-mediated reactions,
CARPA can cause anaphylaxis upon first exposure. Allergic inflammations such as asthma
involve lectin-dependent activation of the complement system via Ficoli-1 in response to
allergens [104,105]. The mRNA-LNP COVID-19 vaccine can activate complements and
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increase the production of proinflammatory cytokines including IL-1¢, IL-1f3, IL-6, IL-8,
IFN-y, and TNF-« in PBMC cultures [36]. The COVID-19 vaccine can activate complements
in an anti-PEG IgG-dependent manner and induce activation of basophils and M1 polariza-
tion of monocytes [78]. Thus, activation of complements caused by the COVID-19 vaccine
can increase production of proinflammatory cytokines. PEGylation can reduce clearance
of LNPs by mononuclear phagocytic cells by affecting binding of opsonin protein to lipo-
somes [106-109]. In the case of the COVID-19 vaccine, interaction with immune cells can
activate the complement system [110]. This implies that the stability of COVID-19 vaccine
can be reduced by the complement system. Anti-PEG antibodies can reduce stability of
PEGylated nanoparticles [111]. Anti-PEG antibodies can activate complement system by
binding to PEG on the surface of PEGylated liposomal doxorubicin (PLD) [112]. Repeated
injections of PEG-LNPs can decrease stability of PEG-LNPs [113]. Induction of accelerated
blood clearance (ABC) phenomenon by PEG results from anti-PEG IgM produced after the
initial injection [113]. Injections of siRNA complexed with PEGylated cationic liposomes
(PLpx) can lead to rapid clearance of subsequent doses of PLpx by inducing production
of anti-PEG IgM from peritoneal PEG-specific B cells [114]. Anti-PEG IgG and IgM are
responsible for loss of efficacy of mRNA-LNP vaccines by inducing ABC phenomenon [115].
LNPs can activate splenic marginal zone B (MZB) cells to induce production of anti-PEG
IgM, which in turn can activate the complement system and lead to the ABC phenomenon.
Anti-PEG IgM can destabilize mRNA-LNP by releasing mRNA in a complement-dependent
way [116]. Complement fragment C3 produced after activation of complement proteases
can bind to complement receptors (CRs) expressed on phagocytes, which in turn can me-
diate the ABC phenomenon [110,117]. C3 convertase (C4b2a) can promote the cleavage
of C3 into C3a and C3b, which can promote phagocytosis [118]. C5 convertase activated
by C3 can promote the cleavage of C5 into C5a and C5b, which can promote formation
of a membrane attack complex (MAC) to cause phagocytosis [118]. Figure 3 shows that
PEGylated mRNA-LNP vaccine can induce production of anti-PEG antibodies, which in
turn can promote complement activation to cause the ABC phenomenon.

An activated complement system can induce release of histamine and opsonization
of LNPs [110]. This implies that activation of complement may lead to allergic inflam-
mation. Mast cells, eosinophils, basophils, macrophages, plasmacytoid dendritic cells,
and neutrophils all express receptors for C3a and Cba [119,120]. Anti-PEG IgM and IgG
can induce production of anaphylatoxins C3a and C5a via the classical pathway, which
in turn can induce degranulation of mast cells [121,122], smooth muscle contraction, and
release of histamine, serotonin, PAF, and cysteinyl leukotrienes (CysLTs) [123,124]. C5a
contributes to inflammation through activation of the NLRP3 inflammasome and induc-
tion of IL-1p3 [125]. C5a-C5aR signaling can increase numbers of Th1 and Th2 cells while
decreasing the number of Treg cells in a mouse model of asthma [126]. C5 can prevent the
development of experimental allergic asthma [127], meaning that complement activation
can mediate allergic responses induced by mRNA-LNP vaccines. Figure 3 shows that
anaphylatoxins can induce degranulation of mast cells to cause anaphylaxis. A better
understanding of interactions between PEGylated nanoparticles and the blood immune
system is necessary for developing effective and safe PEG-LNP vaccines to reduce ABC
phenomenon and allergic responses.
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Figure 3. PEG induces complement activation-associated anaphylaxis and ABC phenomenon. PEGy-
lated mRNA-LNP vaccine induces cross linking of B cell receptors. B cells are then differentiated into
plasma cells. Plasma cells produce anti-PEG antibodies. Anti-PEG IgE activates immune cells such as
mast cells and basophils, resulting in anaphylaxis through Fce receptor in a complement-independent
manner. PEG-anti-PEG-IgM complex can activate complement via classical pathway. Activation of
complement produces anaphylatoxins such as C3a and C5a. These anaphylatoxins can stimulate
mast cells to release various mediators and induce degranulation of mast cells. Anaphylatoxins can
also induce immune cells to release PAF. PAF can bind to mast cells to cause degranulation of mast
cells. PEG-mRNA-LNP vaccine can induce the production of anti-PEG IgM, which in turn can bind
PEG-LNP. This binding can induce complement activation to produce complement fragments such
as C3b and C5b. C3 can activate C5 convertase to produce C5a and C5b. These fragments can bind
to complement receptors (CR3 and CR4) to induce ABC phenomenon by macrophages. Arrows
denote the direction of reaction. | denotes decreased expression/activity and 1 denotes increased
expression/activity. LTR, leukotriene receptor; TxA2, thromboxane A2; PGE, poly glutamic acid
ethylene oxide.

8. How to Reduce Immune Responses Associated with PEG

Many polymers, including polyvinylpyrrolidone and poly(2-methyl-2-oxazoline), can
induce polymer-specific antibodies [128]. These antibodies contribute to the pathogenesis of
HSRs and the ABC phenomenon [129,130]. mRNA-LNP complexes can cause allergies and
autoimmune diseases [90,131,132]. Thus, it is necessary to minimize these immune-related
adverse reactions resulting from repeated delivery of mRNA-LNPs. Each component
of LNP formulations can elicit an immune response. Replacing each component might
reduce immune-related adverse reactions induced by mRNA-LNP vaccines. Since PEG is
considered an epitope, PEG density on the surface of LNP can influence the production
of anti-PEG IgM. High molecular weight PEGs can cause HSRs more easily than low
molecular weight PEGs [133] owing to high level of anti-PEG IgM.

However, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)
(DSPE)-PE; 40k (branched PEG lipid derivative) does not trigger the ABC phenomenon ow-
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ing to the fact that 40 kDa DSPE-PE; 4¢ can induce lower anti-PEG IgM levels than linear
PEG-modified nanocarriers (DSPE-PE,q ) [134]. Cleavable-branched and branched PEG-
lipid derivatives can reduce the ABC phenomenon by inducing lower levels of anti-PEG
antibodies [135].

High molecular weight (MW) free PEG can enhance the stability of PEG liposomes
in animals with high levels of pre-existing anti-PEG antibody (APA) by suppressing APA
production [136,137]. Free PEG can cause durable suppression of the APA response [136].
Free PEG might also be able to inhibit anaphylaxis by saturating B cell receptors (BCRs) to
prevent the infused PEG-liposome from activating BCRs and inducing the production of
APA. A lack of APA response might exert a negative effect on the ABC phenomenon.

Polysarcosine (PSar)-liposomes display fewer systemic and off-target interactions
and higher stability than PEGylated liposomes [113]. PSar-liposomes can induce low
levels of antibodies for PSar-liposomes [113]. Multiple injections of PSar-liposomes
can reduce the ABC phenomenon by inhibiting accumulation of liposomes in the liver
and spleen [113,138]. Liposomes with the longest PSar chain (68 mers) show en-
hanced stability and reduced ABC phenomenon compared with PEG-liposomes [139].
Poly (2-methyacryloyloxyethyl phosphorylcholine) (PMPC)-LNPs formulated from 1,2-
dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE)-LNPs display no cytotoxic effects
or induce inflammatory responses. They also exhibit higher mRNA transfection efficiency
than PEG-LNPs [108]. Poly-glutamic acid-ethylene oxide (PGE) graft copolymers can
replace PEG on LNPs [83]. Unlike PEG-LNPs, PGE-LNP does not induce production of the
anti-PEG antibody [83]. Injection of Rg3-liposomes does not induce production of IgM or
activation of the complement system in blood circulation [140]. Thus, Rg3 can enhance the
stability of liposomes without inducing the ABC phenomenon or immune responses. These
reports indicate that replacing PEG with other polymers can decrease immune-related
adverse reactions induced by PEG-mRNA-LNP vaccines.

Structural modification of the PEG moiety might reduce immunogenicity associated
with PEG. Methoxy PEG grafting to allogeneic splenocytes can increase the number of Treg
cells while decreasing Th17 lymphocytes [141]. This indicates that modification of PEG
can induce immune tolerance. For example, polysialic acid-modified liposomes do not
induce immune responses typical of PEGylated liposomes [142]. Inserting gangliosides
into the bilayer beside PEG can also suppress the production of anti-PEG IgM [143]. A
negative charge on PEG at the liposomal surface can induce HSRs by activating the comple-
ment system [144]. However, conjugating PEG200 to cholesterol (CHOL-PEG) can reduce
complement activation to attenuate HSRs [144]. Thus, structural modifications of PEG can
regulate immune-related adverse reactions by promoting immune tolerance.

9. Tolerance-Inducing mRNAs Can Reduce Allergies and Autoimmunity

Vaccine technology using mRNA-LNP can be employed to suppress antigen-specific
immune responses [145,146]. Since mRNA-LNP vaccines can induce allergies and autoim-
mune response, it is critical to develop tolerogenic vaccines that are safe and effective.
PEGylated nanoparticles can create a tolerogenic immune microenvironment by inducing
lower complement activation than non-PEGylated PLGA nanoparticles around the injec-
tion site [147]. mRNA-LNP encoding non-allergenic MHC-II-binding epitopes has shown
tolerogenic effects in a mouse model of peanut anaphylaxis [148]. This tolerogenic effect is
mediated by tolerogenic Treg cells and accompanied by suppression of the production of
Th2 cytokines (IL-4, IL-5, and IL-13), IgE synthesis, and increased expression of TGF-f3 and
IL-10 [148]. PEG-mRNA-LNP enclosing antigenic T cell epitope can increase frequencies of
Foxp3*Tregs while decreasing antigen-specific T cells producing TNF [149].
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The PEGylated mRNA-LNP vaccine can be considered as a self-antigen that can cause
autoimmune diseases. Modification of mRNA can treat allergies and autoimmune diseases
associated with mRNA-LNP vaccines [148,150]. Modified mRNA-LNP can enter cells
via endocytosis. After endocytosis, mRNA undergoes endosomal escape. mRNA is then
translated into antigens. After proteasomal breakdown into peptides, these peptides are
then presented on the surface of APCs to induce the generation of Foxp3™* regulatory T
cells (Treg), which can induce tolerance to allergens or self-antigens [148].

Modifying nucleosides can suppress inflammation induced by exogenous mR-
NAs [151]. For example, uridine can be replaced with pseudouridine (¥) or m1Y, and
cytosine can be replaced with 5-methyl cytosine. Unmodified mRNA can induce the pro-
duction of type I IFN by stimulating innate immune sensors [152]. Unmodified ovalbumin
(OVA)-LNP shows better anti-tumor effects than OVA-LNP with m1Y modification [153].
Unmodified OVA-LNP can increase the number of CD40" DCs and the frequency of
granzyme B*/IFN-y*/TNF-a* OVA peptide-specific CD8" T cells [153]. Unmodified
mRNA can also induce the production of proinflammatory cytokines including IFN-y,
TNF-«, and IL-2. However, high doses of ¥-modified mRNA do not induce the produc-
tion of proinflammatory cytokines [153,154]. Thus, ¥-modified mRNA might induce a
tolerogenic effect. It has been shown that m1¥-modified mRNA displays high transla-
tional efficiency without inducing innate immune responses [155,156]. Such m1¥-modified
mRNA does not induce activation of TLR7 [157]. It has been found that m1¥ mRNA can
induce proliferation of immune suppressive FoxP3" T reg cells to attenuate peanut-induced
anaphylaxis. This effect is accompanied by decreased expression of Th2 cytokines and
IgE synthesis [148]. However, m1¥Y mRNA does not lead to generalized immune suppres-
sion due to tolerogenic effects on APCs such as DCs [148]. In other words, DCs remain
functional after internalization of m1¥ mRNA.

Unmodified mRNA and small dsRNA can induce innate immunity and immune-
related adverse reactions [158]. Modification and codon optimization of mRNA may
decrease the risk of unwanted immune responses associated with mRNA-LNP vaccines.
There are several ways to achieve immune tolerance: (1) nucleoside modifications, which
may suppress activation of innate immune sensors and production of inflammatory cy-
tokines; (2) optimization of UTR, which may increase translation efficiency and reduce
immunogenicity of mRNA-LNP; (3) removal of dsRNA during IVT, which may reduce the
production of inflammatory cytokines induced by mRNA-LNP vaccine; (4) reducing short
RNA production during IVT, which may reduce the induction of innate immunity; and
(5) introduction of conformational changes into T7 RNA polymerase, which may reduce
production of dsRNA during IVT. Figure 4 shows that mRNA modification can induce
immune tolerance to treat allergies, RA, and type I diabetes resulting from injection of
PEGylated mRNA-LNP vaccines.
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Figure 4. Induction of immune tolerance by mRNA-LNP. After endocytosis of modified PEG-
mRNA-LNP vaccine by APC, mRNA undergoes endosomal escape. mRNA is then released and
translated into antigen. Antigenic epitopes can be presented on MHC-II and bind to TCR on CD4*

Proteasomal

APC

T cells. CD4* T cells are then differentiated into FoxP3" Treg cells. Treg cells can secrete immune
suppressive cytokines such as IL-10 and TGF-f3. These Treg cells can induce immune tolerance.
This tolerogenic effect is accompanied by decreased expression TH2 cytokines and IgE. CTLA-4,
cytotoxic T-lymphocyte antigen 4; IVT, in vitro transcription; LAG3, lymphocyte activation gene-3;
PD-1, programmed death-1; RA, rheumatoid. Arrows and hollow arrows denote the direction of
reaction. T bars denote inhibition of reaction. 1 denotes increased expression/activity.

10. Discussion and Perspectives

Current clinical trials have shown that mRNA-LNP vaccines will continue to be
treatment paradigms. However, these mRNA-LNP vaccines are known to cause unwanted
immune responses. Vaccination with any COVID-19 vaccine (BNT162b2, Ad26.COV2.S,
and mRNA-1273) can reduce risk of developing long COVID [159]. Individuals who have
booster vaccination of mRNA-based COVID-19 vaccines (BNT162b2, mRNA-1273) display
a higher risk of developing autoimmune connective diseases including rheumatoid arthritis
and alopecia areata [160]. Concerns regarding the development of autoimmunity may exert
a negative impact on uptake of COVID-19 vaccines. COVID-19 vaccines (BNT162b2 and
CoronaVac) can cause autoimmune conditions requiring hospital care [161]. It would be
necessary to develop tolerogenic mRNA-LNP vaccines to reduce the risk of developing
autoimmune diseases.

The occurrence of PEG antibodies in the general population is increasing every year
due to wide use of PEG in daily life and the development of sensitive assay systems for
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detecting anti-PEG antibodies. The ABC phenomenon induced by anti-PEG antibody
could diminish the therapeutic efficacy of PEGylated products and increase the risk of
HSR. It will be necessary to better understand the interplay between nanostructures and
immune cells to reduce the ABC phenomenon. The contents of LNPs, dosing schedules,
and routes of administration may reduce the ABC phenomenon. The role of PEGs in
the induction of HSRs, ABC phenomenon, anaphylaxis, and mechanisms associated with
these immunological reactions should be further investigated to make safe and effective
mRNA-LNP vaccines. It is also necessary to test immunogenicity of PEGylated mRNA-LNP
vaccines in animal models in association with the ABC phenomenon, CARPA, and HSRs.

To develop effective mRNA-LNP vaccines, it will be necessary to reduce unwanted
immune responses associated with mRNA-LNPs. The following approaches may improve
the efficacy of mRNA-LNPs: (1) optimizing mRNA sequence and molecular modifica-
tion for inducing tolerogenic effects; (2) identifying route of administration for reducing
immune-related adverse events; and (3) identifying PEG alternatives to reduce ABC phe-
nomenon and HSRs. The induction of antigen-specific immune tolerance by modifying
the mRNA-LNP vaccine has shown clinical benefits for treating allergic diseases. Circular
IVT-mRNA produced by permuted intron-exon splicing circularization has shown low
immunogenicity without altering protein production [162].

Since PEGylated LNP-mRNA vaccines can cause the ABC phenomenon and allergies,
it will be necessary to identify PEG alternatives. Polypropylene glycol (PPG), polytetram-
ethylene ether glycol (PTMEG), and poly-1,4-butylene adipate (PBA) can replace PEG in
mRNA-LNPs [160]. However, these polymers may react with the anti-PEG antibody [163]
and cause unwanted immune responses, including the ABC phenomenon, CARPA, and
various other immune-related adverse reactions. The clinical skin prick test employing
a panel consisting of PEG and PEG alternatives can enhance the chance to identify pa-
tients who might develop allergic reactions to mRNA-LNP vaccines containing PEG or
PEG alternatives. To reduce the risk of the ABC phenomenon and CARPA associated
with mRNA-LNP vaccines, it is necessary to identify individuals with natural anti-PEG
antibody [78,98].

To develop mRNA-LNP vaccines that would not cause the ABC phenomenon or
immune-related adverse reactions resulting from immunogenicity of PEG, it is necessary
to understand interactions of PEG and PEG alternatives with immune cells. Studies on
the immunogenicity of PEG and PEG alternatives should be carried out in the context
of the whole PEG-mRNA-LNP vaccine. Public databases summarizing immunological
and physicochemical properties of PEG and PEG alternatives using various excipients
and whole products could provide valuable information on the selection of PEG and PEG
alternatives for mRNA-LNP vaccines.

Since anti-PEG antibodies can be detected in individuals who have never received
PEGylated vaccines, it is necessary to develop vaccines based on PEG-free delivery systems.
Since PEG cannot be easily modified, it is reasonable to devise vaccines based on PEG-free
systems. There have been reports concerning the effectiveness of PEG-lipid-free vaccines.
It has been shown that a PEG-free two-component mRNA vaccine (PFTCmvac) containing
a receptor binding domain of SARS-CoV2 can induce strong adaptive and innate immunity
without causing immune-related adverse reactions [164]. Furthermore, PFTCmvac does not
induce activation of the complement system [164]. Thus, PFTCmvac can be an alternative
delivery vehicle for COVID-19 vaccines. mRNA-LNPs based on monoacyl POx/POz-lipids
have displayed transfection efficiencies, cytocompatibility, and biophysical properties
comparable to PEG-lipid equivalents [165]. PEG-lipid alternatives based on reversible
addition-fragmentation chain transfer (RAFT) have displayed higher gene expression and
antigen-specific antibody production than conventional PEGylated LNPs [166].
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11. Conclusions

COVID-19 has accelerated the acceptance of mRNA-LNPs. mRNA-LNPs have shown
clinical benefits. Transcriptomic analysis of individual patients will give valuable in-
formation for designing safe and effective COVID-19 vaccines. It has been shown that
mRNA-LNPs can elicit unwanted immune reactions including anaphylaxis, hypersensitiv-
ity, and autoimmunity. To make more effective and safe vaccines, it will be necessary to
develop tolerogenic mnRNA-LNPs to prevent the induction of unwanted immune reactions.
mRNA-LNPs have a tendency to become trapped in endosomes, which can exert toxic
effects. It is necessary to improve endosomal escape of mRNA-LNPs to reduce toxicity
and improve efficiency. Overcoming problems associated with mRNA-LNPs will make
mRNA-LNPs a cornerstone of personalized therapy.

LNPs can carry Cas-9 mRNA or guide mRNA, suggesting that LNPs can be employed
as a delivery vehicle for gene editing. In other words, mRNA-LNPs can be employed
to treat various genetic diseases. To broaden the use of mRNA-LNPs, the targeting of
mRINA-LNPs to various organs is needed. Based on recent technological progresses, the
future of mRNA-LNPs vaccines beyond the pandemic is optimistic.
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