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Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syn-
drome coronavirus 2n first appeared in Wuhan, China in 2019. Soon after, it was 
declared a pandemic by the World Health Organization. The health crisis imposed 
by a new virus and its rapid spread worldwide prompted the fast development of 
vaccines. For the first time in human history, two vaccines based on recombinant 
genetic material technology were approved for human use. These mRNA vaccines 
were applied in massive immunization programs around the world, followed by other 
vaccines based on more traditional approaches. Even though all vaccines were tested 
in clinical trials prior to their general administration, serious adverse events, usually 
of very low incidence, were mostly identified after application of millions of doses. 
Establishing a direct correlation (the cause-effect paradigm) between vaccination and 
the appearance of adverse effects has proven challenging. This review focuses on 
the main adverse effects observed after vaccination, including anaphylaxis, myocar-
ditis, vaccine-induced thrombotic thrombocytopenia, Guillain–Barré syndrome, and 
transverse myelitis reported in the context of COVID-19 vaccination. We highlight 
the symptoms, laboratory tests required for an adequate diagnosis, and briefly outline 
the recommended treatments for these adverse effects. The aim of this work is to in-
crease awareness among healthcare personnel about the serious adverse events that 
may arise post-vaccination. Regardless of the ongoing discussion about the safety of 
COVID-19 vaccination, these adverse effects must be identified promptly and treated 
effectively to reduce the risk of complications.
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1  |  INTRODUC TION

Coronavirus disease 2019 (COVID-19) caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) first appeared 
in Wuhan, China late in December of 2019. Due to its rapid global 
spread, the outbreak was declared a pandemic by the World Health 
Organization (WHO) by March 2020.1 Most infected individuals 
remained asymptomatic or had mild “flu-like” symptoms. However, 
some people, especially aged population and/or with comorbidities 
(obesity, diabetes, hypertension, lung disease), had severe manifes-
tations of the disease, including pneumonia, acute respiratory dis-
tress syndrome and damage in extrapulmonary tissues (e.g., heart, 
kidney, gastrointestinal tract, and pancreas), therefore requiring 
hospitalization and intensive care.2 As of 2 August 2023, there have 
been 6 953 743 deaths reported to the WHO.3

SARS-CoV-2 is a single-stranded positive-sense RNA virus, 
whose cell entry occurs via the receptor binding domain (RBD) of 
the Spike protein, one of the four structural proteins coded by its 
genome.4 Spike displays on the virus surface as a trimer, comprises 
two subunits (S1 and S2), and has a furin cleavage site (S1/S2).5 Virus 
entry requires the interaction of the receptor binding motif, pres-
ent in RBD of S1, with the angiotensin-converting enzyme 2 (ACE2) 
of the host cells.6 ACE2 is a plasma membrane glycoprotein with a 
broad tissue expression; lung has a moderate expression, while in-
testine, kidney, testis, heart, thyroid gland, and adipose tissue have 
the highest expression.7,8 ACE2 is responsible for the conversion of 
angiotensin II (Ang II) to the heptapeptide Ang 1–7; thus its enzy-
matic function is critical for renin-angiotensin system (RAS) balance.9

In view of the global health emergency, vaccine development be-
came a priority. In an extraordinary short time, two mRNA vaccines 
were first approved, BNT162b2 (Comirnaty) from Pfizer-BioNTech 
and mRNA-1273 (Spikevax) from Moderna. Then, two adenoviral vec-
tor vaccines came into scene, Ad26.COV2.S (Jcovden) from Johnson 
& Johnson (Janssen) and ChAdOx1 nCov-19 (Vaxzevria) from the 
University of Oxford and AstraZeneca. As of 30 March 2023, there 
were 183 vaccine candidates in clinical trials and 199 in preclinical 
studies.10 Of those in clinical phase 3 or 4, only 11 vaccines were 
included in Emergency Use Listing (EUL) from the WHO.11

Common local side effects induced by most approved 
COVID-19 vaccines were pain and redness/swelling at the in-
jection site, while the systemic side events more often reported 
were headache, fever, myalgia and fatigue.12–23 The national and 
regional surveillance programs, as well as clinical and basic re-
search projects around the world, have played an important role 
to gather, organize, and critically evaluate the incidence of side 
effects after vaccination.

Some adverse events, although very rare, are considered serious 
because of their potentially fatal outcome.1 Among the more reported 
serious adverse events after COVID-19 vaccination are anaphylaxis, 
vaccine-induced thrombotic thrombocytopenia (VITT), myocarditis, 
Guillain–Barré Syndrome (GBS), and acute transverse myelitis (TM). 
Given its very low incidence, they were almost not observed during 
phase 3 clinical trials; their occurrence became evident after the 

massive worldwide vaccination programs. Hence, there are increas-
ing numbers of case reports, retrospective cohort studies, systematic 
reviews, meta-analysis, and other studies, aimed to described them.

2  |  MAIN PL ATFORMS OF COVID -19 
VACCINES

Most of the COVID-19 vaccines are based on Spike protein of 
SARS-CoV-2, since it is exposed on viral surface, mediates entry 
into host cells and thereby, is the main target of neutralizing anti-
bodies upon infection.5 Likewise, many of the vaccine candidates 
in clinical or preclinical studies are based on RBD of S1, intended 
for a more focused and safe immune response, as up to 90% of 
neutralizing antibodies target RBD.24 An ideal vaccine should 
induce high levels of neutralizing antibodies, elicit robust Th1-
biased immune responses, stimulate and maintain long-lasting im-
munological memory prior to the emergence of new variants, and 
provide cross-protection among various coronavirus strains and 
variants.25

Some COVID-19 vaccines (Table  1) include mutations that 
stabilize Spike protein in its pre-fusion conformation (prior to 
host cell attachment), in which it is more likely to generate pro-
tective antibodies, those targeting relevant epitopes present in 
S1 that can be hidden or lost on the Spike post-fusion conforma-
tion. There are two strategies to prevent this structural change: 
Spike protein with 2 residues (K986 and V987) mutated to proline 
(S-2P), and deletion/mutation of the S1/S2 furin cleavage site.29 
Different vaccine platforms and adjuvants differentially activate 
innate immune cells and inflammatory cytokines via specific sig-
naling molecules and pathways, therefore influencing the quality 
and magnitude of adaptive immune responses.30 We will briefly 
outline the main type of vaccines against SARS-CoV-2 in the next 
sections.

2.1  |  Nucleic acid vaccines

Nucleic acid (DNA/RNA) vaccines carry a nucleotide sequence 
encoding the protein of interest. This approach uses the host cel-
lular machinery to generate foreign antigens, which could be pre-
sented in the context of both major histocompatibility complex 
(MHC) class I and class II molecules from antigen-presenting cells 
(APCs), thereby eliciting both humoral and cellular immune.31,32 
DNA-based vaccines need to reach the cell nucleus; in contrast, 
mRNA-based vaccines induce a faster antigen expression since it 
occurs in the cytoplasm, which also avoids any risk of insertional 
mutagenesis. Issues of instability, high innate immunogenicity, and 
inefficient delivery have been solved through engineering RNA se-
quences and using highly efficient nanocarrier systems to mediate 
intracellular delivery.31,32 To the latter purpose, the two approved 
mRNA vaccines employ lipid nanoparticles (LNPs), which have four 
components: an ionizable lipid, cholesterol, a helper phospholipid, 
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and a PEGylated lipid, together encapsulating and protecting the 
fragile mRNA core.33 Other advantages of mRNA vaccines are its 
fully synthetic nature, relatively rapid design, and production, as 
well as easy scalability. However, they also present some draw-
backs such as high cost and requirement of an ultra-cold chain 
process for storage and distribution.33,34

Both mRNA-based vaccines, BNT162b2 (Pfizer/BioNTech) and 
mRNA-1273 (Moderna), use the S-2P strategy to stabilize the prefu-
sion Spike conformation (Table 1), and have demonstrated very high 
efficacy and good safety in phase 3 clinical trials.12,13

2.2  |  Viral vector vaccines

Adenoviral (Ad) vectors used as a vaccine platform are inherently 
immunogenic and usually require no additional adjuvants.35 So 
far, Ad vectors used by approved COVID-19 vaccines are non-
replicating, because their viral replication genes had been deleted, 
and instead contain the coding sequence for the antigen of interest 
(i.e., Spike protein), whose expression occurs once inside the cells of 
the vaccinee.36 Viral vector vaccines induce both humoral and cel-
lular immunity.35,37 Within this category, the WHO's EUL includes 

TA B L E  1 Approved COVID-19 vaccines included in Emergency Use Listing by World Health Organization.

Vaccine 
platform Vaccine name (efficacy)

Commercial 
name Manufacturer (dosage regimen) Immunogen Notes

mRNA BNT162b2 (95%)12 Comirnaty Pfizer/BioNTech (2 doses) S-2P Ionizable cationic lipid: 
ALC-0315
Other lipids: 
DSPC, cholesterol, 
PEG-ALC-0159

mRNA-1273 (94.1%)13 Spikevax Moderna (2 doses) S-2P Ionizable cationic lipid: 
SM-102
Other lipids: DSPC, 
cholesterol, PEG-DMG

Viral 
vector

ChAdOx1 nCov-19 or 
AZD1222 (74%)18

Vaxzevria University of Oxford/AstraZeneca 
(2 doses)

tPA.S Vector: ChAdOx1
Produced in T-REx 
HEK293 cellsCovishield (Oxford/Astra-Zeneca 

formulation)
Serum Institute of India (2 doses)

Ad26.COV2.S 
(52.9%–74.6%)26

Jcovden Janssen (Johnson & Johnson) (1 
dose)

S-2P, S1/S2 cleavage 
site mutations

Vector: Ad26
Produced in PER.C6 
TetR cells

Ad5-nCoV (57.5%)15 Convidecia CanSino Biologics (1 dose) tPA.S Vector: Ad5
Produced in 
HEK293SF-3F6 cells

Gam-COVID-Vaca 
(91.6%)19

Sputnik V Gamaleya Research Institute (2 
doses)

Spike Vector: recombinant 
Ad5 and Ad26

Inactivated 
virus

CoronaVac (65.9%–67.7%)27,28 Sinovac Biotech (2 doses) Whole virus Vero cell cultivation
β-propionolactone 
inactivation
Aluminum hydroxide 
adjuvant

BBIBP-CorV 
(72.8%–78.1%)20

Covilo Sinopharm (2 doses) Whole virus Vero cell cultivation
β-propionolactone
inactivation
Aluminum hydroxide 
adjuvant

BBV152 (77.8%)21 Covaxin Bharat Biotech (2 doses) Whole virus Vero cell cultivation
β-propionolactone 
inactivation
Algel-IMDG adjuvant

Protein 
subunit

NVX-CoV2373 
(89.7%–90.4%)16,17

Nuvaxovid Novavax (2 doses) S-2P, S1/S2 cleavage 
site mutations

Baculovirus-insect cell 
expression system
Saponin-based 
adjuvant (Matrix-M1)

Covovax (Novavax formulation) Serum Institute of India (2 doses)

Abbreviations: DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; IMDG, imidazoquinoline; PEG, polyethylene glycol, usually bound to a lipid 
(PEGylated lipid, e.g., PEG-DMG and PEG-ALC-0159); PER.C6, human embryonic retinal cell line; S1/S2, between subunits 1 and 2 of Spike; S-2P, 
full-length Spike with two proline stabilizing mutations (K986P, V987P); tPA.S, fusion of tissue plasminogen activator signal peptide to Spike; T-Rex 
HEK293, variant from human embryonic kidney 293 cell line.
aIncluded just for comparative purposes, but not in Emergency Use Listing (restarted assessment).
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ChAdOx1 nCov-19 (Vaxzevria, Oxford/AstraZeneca), Ad26.COV2.S 
(Jcovden, Johnson & Johnson/Janssen), and Ad5-nCoV (Convidecia, 
CanSino), while the status of assessment for Gam-COVID-Vac 
(Sputnik V, Gamaleya Research Institute) was restarted.38

In populations previously exposed to the most used Ad vectors 
like Ad5, a diminished immune response after vaccination could be 
a disadvantage. To avoid this potential issue, other human sero-
types or non-human Ad vectors have been explored, such as Ad26 
in Jcovden and the first dose of Gam-COVID-Vac, or chimpanzee 
Ad vector in Vaxzevria.36,37 Other design aspects are a strategy to 
stabilize Spike in its trimeric form in two vaccines (Vaxzevria and 
Convidecia), which involves the fusion of Spike protein to the tissue 
plasminogen activator (tPA) signal peptide, and the use of S-2P ap-
proach in Jcovden39 (Table 1).

2.3  |  Inactivated virus vaccines

Inactivated virus vaccines are produced through the cell culturing 
of whole virus particles, which are made non-infectious by chemi-
cal (formaldehyde, β-propionolactone) or physical (heat, UV radia-
tion) means,40 while retain their capacity to stimulate the immune 
system. Compared with live-attenuated virus vaccines that also use 
whole viruses, inactivated virus vaccines are safer; however, they 
usually require an adjuvant, such aluminum hydroxide, to generate 
a robust cellular immune response.41 The WHO has approved three 
vaccines in this category given their good efficacy and safety profile: 
CoronaVac (Sinovac), BBIBP-CorV (Covilo, Sinopharm), and BBV152 
(Covaxin, Bharat Biotech) (Table 1).

2.4  |  Protein subunit vaccines

Subunit protein vaccines contain one or few viral proteins, or even 
only a protein fragment (e.g., RBD) of the antigen, favoring their 
safer profile with respect to full pathogen-based vaccines (i.e., in-
activated or attenuated virus), but also contributing to a reduced 
immunogenic capacity. Therefore, the use of adjuvants in their for-
mulation and multiple doses are considered to enhance the immune 
response for this type of vaccines.42 A protein subunit vaccine is pro-
duced in vitro, without the risks and special equipment associated 
to handling infectious live viruses. However, since many stages are 
required in its design and production, including purification steps, 
this type of vaccines may take longer than others to generate.34,42 
There are many recombinant expression systems available to pro-
duce the target protein, including bacterial, mammalian, yeast, insect 
and plant cells.30 Protein-based vaccines usually are stable, safe, and 
well tolerated, even in elderly or immunodeficient individuals.34

NVX-CoV2373 (Nuvaxovid, Novavax) is the only protein sub-
unit vaccine approved by the WHO to this date. It is a nanoparticle 
vaccine consisting of the prefusion-stabilized Spike protein (S-2P), 
produced with the baculovirus-insect cell expression system, and 
combined with the saponin-based Matrix-M adjuvant.43,44 Serum 

Institute of India is producing Covovax using Novavax formulation. 
Overall, this vaccine has had very good efficacy and a favorable 
safety profile in various clinical trials.16,17,44

3  |  COVID -19 VACCINES AND MAIN 
SERIOUS ADVERSE E VENTS

Serious adverse events following immunization include those that 
are life-threatening, require hospitalization or prolongation of 
existing hospitalization, result in persistent or significant disabil-
ity/incapacity, give rise to congenital anomalies, or are medically 
important events or reactions.45 These events are very rare and 
should be temporally associated with the vaccine administration, 
and before establishing a causal relationship, all other possibili-
ties must be discarded, including simple coincidence or alternative 
origins in particular individuals. In the next sections, the serious 
adverse events most reported after COVID-19 vaccination are de-
scribed, contemplating their incidence, risk factors, diagnosis, and 
treatment.

3.1  |  Immunological adverse events

The clinical manifestations of allergic reactions to vaccines may 
range from mild cutaneous signs (urticaria, angioedema) and symp-
toms (itching) to life-threatening systemic anaphylaxis. There are 
different types of hypersensitive reactions, type I involves IgE-
mediated immune responses and occurs rapidly after exposure to 
allergens, type II is mediated by IgG or IgM antibodies, type III in-
volves the immune complexes, and type IV (or delayed reactions) is 
mediated by T lymphocytes.46

3.1.1  |  Anaphylaxis

Anaphylaxis is an acute hypersensitivity reaction with multisystem 
involvement that can present as, or rapidly (minutes–hours) progress 
to, a severe life-threatening condition. It may occur following ex-
posure to allergens from a variety of sources including food, insect 
venom, drugs, and immunizations.47 The World Allergy Organization 
updated the clinical definition of anaphylaxis in 2020 to enhance 
recognition48 (Table 2).

Soon after the start of COVID-19 vaccination programs with 
mRNA vaccines, cases of anaphylaxis appeared.49,50 A meta-analysis 
including 26 337 421 recipients of Pfizer-BioNTech and Moderna vac-
cines estimated an overall prevalence of 5 anaphylactic cases per mil-
lion doses, with more cases associated with BNT162b2 and greater 
prevalence in women, usually occurring within 30 min of inoculation.72 
Another meta-analysis considering also vector vaccines (Janssen and 
AstraZeneca/Oxford), reported that Ad26.COV2.S had the highest 
risk of anaphylaxis in the USA and European Union.51 A study using 
data from the USA Vaccine Adverse Event Reporting System (VAERS) 
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and European EudraVigilance, retrieved 8940 anaphylactic cases post 
COVID-19 vaccination (mRNA and vector vaccines) among more than 
800 million doses administered, and estimated a mean reporting rate 
of 10.67 anaphylactic cases per million doses, below other vaccines 
analyzed, like rabies vaccine.52 An assessment until January 2023 of 
the same pharmacovigilance systems estimated a lower incidence rate 
(8.96 anaphylaxis reactions/million doses) and found that vector vac-
cines had higher reporting rates than mRNA vaccines.53

Hypersensitive reactions, including anaphylaxis, can be IgE-
mediated or non-IgE-mediated.73 IgE-mediated is the most studied, its 
occurrence on first exposure is not typical,74 and there is usually sensi-
tization by a prior antigen exposure. IgE-antigen complex interacts with 
receptor FcεRI on mast cells or basophils, which triggers their degran-
ulation and release of inflammatory cytokines and other mediators, 
like histamine and prostaglandins, thereby inducing distinct systemic 

immune responses.46 Non-IgE mediated anaphylactic responses, previ-
ously known as anaphylactoid reactions, have a similar clinical presen-
tation as IgE-mediated reactions,47,74 hence being as life-threatening 
if not promptly recognized and treated. In contrast, non-IgE mediated 
reactions may occur on first exposure to the antigen by direct activa-
tion of mast cells and basophils, stimulation of the complement system, 
or other pathways.74

The mechanisms involved in vaccine-induced anaphylaxis have 
not been elucidated but are of special interest, as vaccine platforms 
that have been associated with anaphylactic cases are those more 
recently approved for use in humans (mRNA and viral vectors). 
Therefore, safety issues must be considered facing their potential 
broad applications in medicine.

Immediate hypersensitive reactions to vaccines have been mainly 
attributed to non-active ingredients or excipients.75 In the case of 

TA B L E  2 Main serious immunological, cardiac and hematological adverse events after COVID-19 vaccination.

Rare adverse event 
(identified risks) Clinical presentation and diagnostic criteria Proposed mechanisms

Vaccine platform(s) with 
more reported cases

Anaphylaxis (female, 
allergy history)

Acute presentation: minutes to hours
ONE of these scenarios:
1.	Acute skin and/or mucosa signs or symptoms 
(e.g., hives, pruritus, angioedema) AND (a) 
respiratory compromise, (b) hypotension/
end-organ dysfunction OR (c) severe 
gastrointestinal symptoms

2.	Acute hypotension, bronchospasm, laryngeal 
closure/inflammation, even without typical 
skin involvement

Immune response to the PEGylated 
lipid of LNPs in mRNA vaccines or to 
polysorbate 80 in the formulation of 
viral vector vaccines

mRNA
•	 Pfizer/BioNTech and 
Moderna49–53

Adenoviral vector
•	 Oxford/AstraZeneca and 
Janssen51–53

Myocarditis (young men 
and adolescents)

Probable diagnosis: Chest pain, maybe also 
fever and dyspnea, high levels of cardiac 
troponin and C-reactive protein, abnormal ECG 
with ST elevations
Definitive diagnosis depends on findings 
suggestive of myocarditis on endomyocardial 
biopsy (Dallas criteria) or CMR imaging (Lake 
Louise criteria)

Immune response to LNPs, dsRNA 
impurities or mRNA in susceptible 
individuals (e.g., with pre-existing 
dysregulated immune pathways or 
inflammatory conditions)
Molecular mimicry between Spike 
and α-myosin or other cardiac 
proteins
Spike-like effect: ACE2 
downregulation and alteration of 
RAS, overall leading to inflammation

mRNA
•	 Pfizer/BioNTech and 
Moderna54–63

Vaccine-induced 
thrombotic 
thrombocytopenia 
(female particularly for 
CVST, more cases within 
30–50 years old)

Clinical manifestations based on the location 
of thrombosis site(s), for example: neurologic 
symptoms (headache, visual disturbances, 
drowsiness), unexplained back or abdominal 
pain, swelling in a limb, petechiae, easy bruising 
or bleeding
Diagnostic criteria:
Symptoms onset 5–30 days post-vaccination 
(mostly first dose, up to 42 days in DVT)
Thrombocytopenia (platelet count 
<150 × 109/L)
Thrombosis at atypical sites, primarily venous 
(CVST, splanchnic, portal, DVT, pulmonary 
embolism), but may also be arterial
High levels of D-dimer (>4000 FEU)
PF4 antibodies (ELISA and/or functional assay)

Production of autoantibodies 
anti-PF4 that activate platelets and 
lead to a prothrombotic signaling 
cascade, along with a vaccine-
mediated pro-inflammatory medium 
and/or individual predisposition by 
genetic factors

Adenoviral vector
•	 Oxford/
AstraZeneca64–69

•	 Janssen69–71

Abbreviations: ACE2, angiotensin-converting enzyme 2; CVST, cerebral venous sinus thrombosis; dsRNA, double-stranded RNA; DVT, deep vein 
thrombosis; ECG, electrocardiogram; ELISA, enzyme-linked immunosorbent assay; FEU, fibrinogen-equivalent units; LNPs, lipid nanoparticles; CMR, 
cardiac magnetic resonance; PF4, platelet factor 4; RAS, renin-angiotensin system; ST, segment on ECG.



6 of 18  |     PADILLA-­FLORES et al.

mRNA-based COVID-19 vaccines, both Comirnaty and Spikevax use 
LNPs as delivery systems. The PEGylated lipid, which is a lipid with a 
polyethylene glycol (PEG) covalently bound, apports stability to these 
LNPs. PEG is a flexible hydrophilic polymer used in drug formulation to 
reduce clearance and prolong circulation time.76 However, PEGylation 
has been related to hypersensitive reactions and induction of anti-PEG 
antibodies.77 Whether they are induced by PEG per se or as a conju-
gated molecule, is not clear.76 A recent study that measured anti-PEG 
IgE in serum samples from individuals who presented anaphylaxis 
after COVID-19 mRNA vaccines, did not find a difference respect to 
the control group, suggesting that anti-PEG IgE may not be directly 
related to anaphylactic cases,78 which agrees with previous observa-
tions.79 Nonetheless, PEG could provoke allergic reactions through 
other pathways, such as complement activation-related pseudo allergy 
(CARPA).79,80 For viral vector vaccines (Vaxzevria and Jcovden), poly-
sorbate 80, a non-ionic detergent that shares structure similarities with 
PEG, has been highlighted as a potential trigger of hypersensitive re-
actions.75,80 Although, studies are needed to support this hypothesis.

To explain that anaphylaxis and other hypersensitive reactions 
were more observed in women, the impact of hormonal differences 
over allergic immunological responses has been proposed to play a 
role. Likewise, sensitization to PEG is most likely to occur in women 
due to their frequent exposure to PEG-containing products, such as 
cosmetics and contraceptives.81

A history of previous allergic reaction to vaccines or its compo-
nents should be established before immunization.73 Anaphylaxis fol-
lowing vaccination is rare in all age groups and must be distinguished 
from a vasovagal reaction, which is a common non-immune immedi-
ate reaction. Vasovagal reaction typically manifests with diaphore-
sis, nausea, vomiting, pallor, and bradycardia, in contrast to the flush, 
pruritus, urticaria, angioedema, tachycardia, and laryngeal edema 
presented in anaphylactic reactions.74 To investigate about the un-
derlaying mechanisms of anaphylaxis, it is useful to measure serum 
tryptase levels within 2 h after the event. A significant increase from 
baseline (at least 48 h later) is a strong indicator of mast cell as the 
source of inflammatory mediators.73,74

The first line of treatment is adrenaline. Expert medical staff and 
equipment to attend anaphylaxis (adrenaline, antihistamines, oral/paren-
teral steroids, and beta-2-inhalers) should be always available in vaccina-
tion units.73 Identification of the culprit antigen in the vaccine formulation 
would be ideal to avoid future expositions in other products or future im-
munizations, as well as contribute to understanding the vaccine-induced 
anaphylactic mechanisms. Further genome analysis could aid in the iden-
tification of genomic markers in individuals with predisposition to anaphy-
lactic reactions, who may not be candidates for vaccination.

3.2  |  Cardiac adverse events

3.2.1  | Myocarditis and/or pericarditis

Among cardiac complications, myocarditis/pericarditis was the most 
common adverse event reported following COVID-19 vaccination, 

particularly after mRNA vaccines.54 Myocarditis is an inflammatory 
disease of the myocardium (without ischemic involvement) that can 
be caused by infectious agents (virus, bacteria, protozoa, and fungi) 
or non-infectious stimuli (e.g., toxic substances, medications, and 
systemic autoimmune disorders).82,83 Pericarditis, the inflamma-
tion of the pericardium or tissue overlying the heart muscle, some-
times coexists with myocarditis. Myocarditis and/or pericarditis, 
often referred as myopericarditis, has been reported after smallpox 
vaccination.84

Based on a large vaccination program in a health care organiza-
tion of Israel (more than 2.5 million persons 16 years of age or older), 
myocarditis incidence within 42 days after receiving BNT162b2 was 
of 2.13 cases per 100 000 immunizations. The highest incidence 
(10.69 cases per 100 000) was estimated for males between 16 and 
29 years old.85 Although the specific numerical estimate of myocar-
ditis incidence varies across different countries and populations, 
the greatest risk for young males, mostly after the second dose of 
both mRNA vaccines (Comirnaty and Spikevax), has been confirmed 
by many reviews of case reports and series,54–57,86–88 by large-data 
analysis of passive surveillance programs such as VAERS, UK Yellow 
Card scheme, EudraVigilance or others,58,89–91 and by systematic re-
views and meta-analysis.59,60,92 The risk has been extended to male 
adolescents.93,94 More events were reported with mRNA-1273 im-
munization compared to BNT162b,58,60,61,91,95 and shorter interdose 
intervals.91

A priming of immunological response or an increased suscepti-
bility to vaccination is compatible with myocarditis mainly occurring 
after the second dose, or in some cases following the first dose but 
with a prior event of myocarditis or SARS-CoV-2 infection.56,57,62,63 
Myocarditis predominance in males is probably related to the effect 
that sex hormone differences have in cardiac physiology and im-
mune responses,96 and a possible underdiagnosis of cardiac disease 
in women.54

The mechanism by which myocarditis is induced by mRNA 
vaccines is not clear, but various hypotheses have been raised, for 
example, molecular mimicry between Spike and human cardiac 
self-proteins such as actin and α-myosin,97 immune-inflammatory 
responses to residual quantities of double stranded RNA,98 or to 
mRNA (despite nucleoside modifications) in susceptible individuals, 
genetic predisposition to autoimmune reactions, or preexisting dys-
regulated immune pathways.54,99,100

Other hypothesis suggests that some of the Spike protein or 
related peptide fragments coded by mRNA vaccines could escape 
into the systemic circulation101 and reach the heart, where ACE2 is 
abundant. Free-floating Spike may also come from vaccine-targeted 
cells destroyed by the immune system.102 The interaction of Spike 
with ACE2 would drive the receptor internalization and degradation, 
and the diminished ACE2 enzymatic activity could result in Ang II 
overactivity and Ang 1–7 deficiency, ultimately leading to platelet 
aggregation, thrombosis, inflammation, or other pathological symp-
toms that resemble those of SARS-CoV-2 infection.102,103 This model 
is supported by a recent study that analyzed gene expression in car-
diac biopsies from patients with myocarditis post COVID-19 and 
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post mRNA vaccination, as well as in control tissue.104 Interestingly, 
nearly identical alteration of the mRNA expression was found in 
myocarditis samples associated to viral infection or vaccine admin-
istration, including a significant downregulation of ACE2 and upreg-
ulation of ACE and F3 (coagulation factor III or tissue factor); these 
mRNA changes could predispose to inflammation, coagulopathy, and 
myocardial dysfunction.104

Due to the diversity of clinical symptoms, aetiologies, and outcomes 
(e.g., heart failure, sudden death, and dilated cardiomyopathy), myocar-
ditis diagnosis represents a challenge105,106; subclinical acute presen-
tations and bias towards myocardial ischemia or infarction could partly 
explain underdiagnosis.61 In the context of myocarditis post COVID-19 
vaccination, most studies have based their conclusions on a level of 
suspected or probable certainty, given that confirmed or definitive 
myocarditis requires cardiac magnetic resonance (CMR) imaging and/
or endomyocardial biopsy.83,105 The latter is considered the diagnostic 
gold standard, but its indication is very limited in mild presentations due 
to its invasiveness, the probability of false negative results for localized 
myocardial injury and variability in histopathological interpretation.105 
CMR represents a non-invasive option, however, it also requires a high 
level of experience to be performed and analyzed.105,106

Myocarditis symptoms related to COVID-19 vaccination start 
very quickly, within 7 days after second vaccine dose in most 
cases, are of mild and benign clinical course, and have a rapid re-
mission.58,63,94 The most frequent symptom related to myocarditis 
following mRNA vaccines has been chest pain, and in a lower per-
centage, fever, dyspnoea and others.55,57,85 Blood tests usually re-
vealed high levels of troponin (consistent with myocardial injury) and 
inflammatory markers like C-reactive protein, as well as abnormal 
findings on the electrocardiogram suggestive of myocarditis, such 
as ST segment elevations.55,57,85,86,94,107 In patients who underwent 
an echocardiogram, a preserved ventricular systolic function was 
mainly seen, only some of them presented evidence of subtle dilated 
wall or minor pericardial effusion.107

Myocarditis management depends on the severity, clinical 
presentation, and etiology83; it is focused on restoring hemody-
namic stability and the control of heart failure and arrhythmia 
if needed.86 Since vaccine-related myocarditis tends to be mild 
and with preserved ventricular function, reported treatment was 
mainly based on nonsteroidal anti-inflammatory drugs, and in 
a few cases colchicine, steroids or IVIg in addition.55,57,87 When 
left ventricular systolic dysfunction is involved, β-blockers, ACE 
inhibitors, angiotensin-receptor blockers, or diuretics may also be 
considered.83

3.3  |  Hematologic adverse events

3.3.1  |  Vaccine-induced thrombotic 
thrombocytopenia

Vaccine-induced thrombotic thrombocytopenia (VITT), also 
named thrombosis with thrombocytopenia syndrome (TTS), is a 

rare but severe new condition that resembles heparin-induced 
thrombocytopenia (HIT), particularly in the generation of antibod-
ies that bound platelet factor 4 (PF4).64–66 HIT is caused by the 
transient production of platelet-activating antibodies of the IgG 
class that recognize multimolecular complexes of PF4 (cationic) 
bound to heparin (polyanionic).108 Autoimmune HIT, a variant that 
does not involve heparin or other pharmacologic trigger, is associ-
ated with a prothrombotic disturbance, and shares more clinical 
features with VITT.64

Early in 2021, VITT cases started to appear after administra-
tion of Oxford/AstraZeneca vaccine in the UK and many European 
countries, the majority of them involving clots in the brain (cerebral 
venous sinus thrombosis, CVST) with thrombocytopenia.64–66 In 
the USA, VITT cases were described in recipients of Ad26.COV2.S 
vaccine.70 The first 220 cases of VITT in the UK after millions of 
doses of ChAdOx1 nCoV-19 were documented by Pavord et  al.,67 
estimating an approximate incidence of 1:50 000 among patients of 
less than 50 years of age, and of 1:100 000 among older patients, 
with no sex predominance; 49 were fatal cases (22%). Following 
massive application of Ad26.COV2.S in the USA, the TTS reported 
rate (VAERS) was estimated in 3.83 cases per million doses, being 
the highest among women aged 30–49.71

True incidence of VITT is difficult to establish as the literature is 
constantly evolving.109 Besides, there is a possible underreporting 
in countries where Ad vector vaccines were widely administered, 
but with limited resources to diagnose VITT (e.g., Mexico, India), al-
though a role of ethnicity could be explored.110

As VITT after COVID-19 vaccination has been associated with 
Oxford/AstraZeneca and Janssen vaccines, the main hypothesis 
for the pathophysiology mechanisms points to a role of Ad vectors. 
A greater incidence of VITT with ChAdOx1 nCoV-19 compared to 
Ad26.COV2.S has been attributed to differences between vaccine 
composition (e.g. excipients such EDTA, Ad genetic material, resid-
ual proteins of adenovirus, and production cells). A study found that 
ChadOx1 nCoV-19 promotes a stronger pro-inflammatory milieu, 
given its higher proportion of proteins from the production cells (T-
REx HEK293) and the use of a non-human Ad vector compared to 
Ad26.COV2.S.111

PF4, a tetrameric chemokine stored in α-granules of platelets, 
is released in the plasma upon platelet activation and can bind to 
polyanionic molecules, including negatively charged surfaces of 
microbial pathogens. This interaction induces conformational 
changes in PF4, exposing different epitopes, and anti-PF4 antibody-
producing B cells are likely part of an innate immune protection 
mechanism.112 In VITT, it has been hypothesized that bloodstream 
PF4 binds the highly anionic Ad vector capsid (hexon) and other 
vaccine constituents, generating neoantigens that along with the 
pro-inflammatory environment promotes the formation of patho-
genic autoantibodies anti-PF4.112,113 Double stranded DNA leaked 
from the Ad vector vaccine at the injection site may provide another 
highly negative element for PF4 interaction.114 Once produced, high 
affinity “VITT anti-PF4 antibodies” promote PF4 clustering on the 
platelet surface, and the crosslinking of FcγRIIA receptors leads to 
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platelet activation with the resultant release of PF4 and procoagu-
lant platelet microparticles.113,115

Antibodies observed in VITT also seem to stimulate neutro-
phils to release neutrophil extracellular traps (NETs), which have 
a procoagulant activity.113 Given that VITT is not observed in all 
vaccination cases with Ad vector vaccines, there might be an in-
dividual predisposition for the development of VITT. It has been 
suggested a genetic component116,117 and/or a previous priming of 
a subset of B cells to produce pathogenic anti-PF4 antibodies. The 
time window of clinical presentation after vaccination fits more 
with a secondary immune response, and main thrombosis sites, 
such cerebral venous sinuses and splanchnic veins, receive nasal 
sinus or intestinal drainage, which may allow access of microbiota 
and viral products.114,118

Clinical manifestations of VITT depend on the thrombosis 
sites. Thromboses usually involved multiple vascular beds, from 
both venous and arterial circulation; their primary location has 
been the cerebral venous sinus, but thrombosis was also observed 
in portal-, splanchnic-  and deep-vein, pulmonary embolism, and 
arterial events in peripheral vasculature, heart, and brain.67 There 
could be neurologic symptoms (headache, visual disturbances, 
and drowsiness), unexplained back or abdominal pain, swelling 
or redness in a limb, petechiae, easy bruising, or bleeding, among 
others.68 Diagnostic criteria include the onset of symptoms 
5–30 days after COVID-19 vaccination (Vaxzevria and Jcovden), 
thrombosis in atypical sites, thrombocytopenia, high D-dimer lev-
els, and positive ELISA (Enzyme-linked immunosorbent assay) for 
PF4 antibodies (Table 2). The VITT case is considered definitive if 
all five criteria are met and probable if one is missing.67,115 High 
D-dimer and low fibrinogen levels suggest systemic activation of 
coagulation.119

VITT treatment is based on anticoagulation agents and reduc-
ing the autoimmune response. Anticoagulant options include par-
enteral direct thrombin inhibitors (bivalirudin, argatroban), oral 
factor Xa inhibitors (apixaban, rivaroxaban), and fondaparinux.64 
Parental agents are preferred in the acute/critical phase but can be 
switched to oral ones in subacute and chronic phases.115 Heparin is 
not recommended due to VITT similarities with HIT, however it was 
safe in cases where it was used.67 It would be riskier to delay the 
treatment than to give heparin if no other anticoagulant is available. 
Thrombocytopenia is not a contraindication to therapeutic anticoag-
ulation; in fact, patients with the lowest platelet counts could be at 
higher risk of thrombosis. The duration of anticoagulant treatment 
is still unclear, but usually is prescribed while platelet count is low 
and D-dimer is high.120 To inhibit Fcγ receptor-mediated platelet ac-
tivation, intravenous immunoglobulin (IVIg) at a high dose (1 g/kg,  
1–2 days) is indicated. Steroids (prednisone, dexamethasone) are a 
choice if IVIg is not accessible; vitamin K antagonists, aspirin, and 
routine transfusions should be avoided in acute VITT.120 In se-
vere cases, plasma exchange may help clearing autoantibodies. 
Monoclonal antibodies rituximab and eculizumab may be used when 
other therapies fail.121

3.4  |  Neurological adverse events

Neurological mild adverse events are commonly observed after 
COVID-19 vaccination, including headache, anosmia, dizziness, my-
algia, paraesthesia, and weakness122; regularly are of short dura-
tion, self-limiting and ambulatory manageable.123 While neurological 
serious adverse events are rare and may involve the central and/
or peripheral nervous system (e.g., brain, cranial nerves, spinal cord, 
and peripheral nerves); they usually require hospitalization or sup-
portive care. Among these are Bell's palsy, Guillain–Barré Syndrome 
(GBS), transverse myelitis (TM), and cerebral venous sinus thrombo-
sis.123–125 The recovery time from these events is variable as many 
factors have an influence, for example, patient's characteristics (sex, 
age, comorbidities), opportune and appropriate diagnosis and treat-
ment, disease severity, and potential complications.

3.4.1  |  Cerebral venous sinus thrombosis

Although CVST is a rare cerebrovascular condition, in young adults 
it is an important cause of stroke, with higher incidence in women. 
Among risk factors are pregnancy, medications (e.g., oral contra-
ceptives), infections (e.g., otitis, meningitis), head trauma, inherited 
thrombophilia, autoimmune systemic diseases, and cancer.126 Since 
CVST is the most common type of VITT, possible pathophysiologi-
cal mechanisms and general aspects were described in the previous 
section. CVST association with thrombocytopenia, as in VITT, is very 
unusual before COVID-19 pandemic.127 Almost all cases of CVST 
have occurred following first doses of Ad vector vaccines ChAdOx1 
nCoV-19 and Ad26.COV2.S.67,69,70 Interestingly, CVST has also been 
reporter after SARS-CoV-2 infection,128 however studies comparing 
CVST presentation after infection and vaccination are lacking.

Clinical presentation of CVST is diverse and depends on the af-
fected sinus location, patient age, time between onset and hospital 
admission, and the presence of parenchymal lesions.129 The most 
common symptom is headache, which may be diffused or localized, 
usually refractory to analgesics; other clinical scenarios include 
isolated intracranial hypertension (that can lead to headache, pap-
illedema and/or visual impairment), seizures, focal neurological 
deficits (hemiparesis, aphasia, visual loss), subacute encephalopathy 
(mental and alertness disturbances, particularly if deep veins are 
involved), and multiple cranial neuropathies (cavernous sinus syn-
drome).127,130 CVST may cause brain tissue edema due to impaired 
venous drainage, that in turn could affect the delivery of oxygenated 
blood or provoke weakening of capillary walls, potentially conduct-
ing to ischemia or venous hemorrhage, respectively.121

When CVST is suspected, urgent imaging of the brain and its 
venous system is required for diagnosis, for example, computed 
tomography (CT), or magnetic resonance imaging (MRI), with ve-
nography in either case.130 The goal is to assess and prevent com-
plications like intracerebral hemorrhage and stroke. A systematic 
review of VITT with CVST case reports and series showed a high 
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rate of intracerebral hemorrhage.69 Management recommenda-
tions are the same as for VITT, but complementary symptomatic 
treatment (e.g., antiepileptics, osmotic therapy, lumbar puncture, 
and acetazolamide) should be consider if needed.129 Importantly, 
attention must be paid to the so-called pre-VITT syndrome (i.e., 
VITT without thrombosis), in which some patients present a per-
sistent headache and fulfill all the diagnostic criteria of VITT (pre-
vious section) except for the presence of thrombosis on imaging 
studies.131 In these cases, VITT treatment (i.e., anticoagulation and 
IVIg) is strongly suggested to prevent the disease progression, in 
contrast, CVST development has occurred when treatment was 
delayed or stopped prematurely.131,132

3.4.2  |  Guillain–Barré syndrome

GBS is an inflammatory heterogeneous disease of the peripheral nerv-
ous system, characterized by rapidly progressive weakness of legs and/
or arms with hypo- or areflexia. GBS is the most common cause of acute 
flaccid paralysis.133,134 GBS is a rare disease, the estimated incidence 
ranges from 0.81 to 1.89 cases per 100 000 persons/year in North 
America and Europe; it increases with age and males have a higher risk 
than females.135 The main known trigger is a previous bacterial or viral 
infection by Campylobacter jejuni, cytomegalovirus, Mycoplasma pneu-
moniae, among other pathogens.136–138 GBS is particularly remembered 
by its controversial association with influenza A (H1N1) vaccine during 
the “swine flu” immunization program of 1976 in New Jersey/US.139 
Subsequently, there have been GBS reports following application of 
vaccines against rabies, polio, tetanus, hepatitis B, and others; however 
evidence to establish a causal association is little.140

In the context of COVID-19 pandemic, there have been reports 
of GBS, both after SARS-CoV-2 infection and following vaccina-
tion,124,141,142 although for an association to be established or dis-
carded, more studies are required. GBS was mainly reported after 
Ad vector vaccines from Oxford/AstraZeneca and Janssen, and 
in a lesser extent following mRNA vaccines. During clinical trials, 
only Janssen registered a GBS case in the vaccine group, although 
another one occurred in the placebo group also.26 The analysis 
of surveillance data from US Vaccine Safety Datalink, including 
15.1 million doses of COVID-19 vaccines from December 2020 to 
November 2021, found an elevated risk of GBS after Ad26.COV2.S 
(significantly higher than pre-pandemic background rate) but not 
following mRNA vaccines.143 A more recent study, using VAERS 
data and considering a longer period (to January 2022), arrived at 
the same conclusion about a possible association between Jcovden 
and GBS, with a reporting rate of 4.07 cases per 100 000 in a post-
vaccine window of 6 weeks compared to less than 0.5 for BNT162b2 
and mRNA-1273.144 In Australia, GBS cases reported between 
February and November 2021 were analyzed, confirming 41 cases 
within 42 days post-vaccination (Vaxzevria n = 38, Comirnaty n = 3, 
Spikevax n = 0); most cases (35) occurred after the first dose. The 
estimated incidence was 1.85 cases per 100 000 doses, which ex-
ceeded the expected background rate of 0.39.145

Moreover, the analysis of immunoglobulin-treated GBS 
cases registered after COVID-19 vaccination by the UK National 
Immunoglobulin Database between January and October 2021 
found a GBS excess risk of 0.58 cases per 100 000 first doses of 
ChAdOx1 nCoV-19 within 6 weeks after vaccination, but not an in-
cidence excess with first doses of mRNA vaccines.146 While a large 
prospective surveillance study, carried out in a province of South 
Korea considering 38 million doses of SARS-CoV-2 vaccines from 
February 2021 to March 2022, estimated an overall incidence of 
1.42 per million doses and a higher risk associated with vector-based 
vaccines (Vaxzevria and Jcovden) than with mRNA vaccines (Pfizer 
and Moderna).147

Interestingly, Ad5-vectored vaccines are not related with an in-
creased risk of GBS, such as Convidecia (CanSino) and Sputnik V, per-
haps due to a protective role of preexisting immunity.148 In general, 
more GBS cases were registered in men than in women,144,146,147 like 
GBS background epidemiology135 and following SARS-CoV-2 infec-
tion.141,142 Vaccine-related GBS cases occurred in a wide range of 
ages, but more events were observed between 50 and 69 years old 
individuals.144,146

Demyelination and/or axonal degeneration by GBS is consid-
ered autoimmune-mediated, resulting in nerve damage or func-
tional blockade of nerve conduction.134 Molecular mimicry between 
gangliosides (sialic acid-containing glycosphingolipids enriched in 
peripheral nerves) and a microorganism component (e.g., lipopoly-
saccharides of the outer membrane of C. jejuni) has been the most 
studied underlying mechanism, sustained by the detection of differ-
ential anti-ganglioside autoantibodies (e.g., anti-GM1, GD1a, GT1a, 
GQ1b) in certain GBS subtypes and variants.136,138 In the context 
of post COVID-19 vaccination, the pathophysiological mechanism is 
not clear, but it has been proposed that antibody cross-reactivity be-
tween SARS-CoV-2 Spike protein and peripheral nerve glycolipids149 
or proteins related to myelin/axon homeostasis,150 may be involved 
in causing demyelination or axonal damage. Additionally, a genetic 
background of the host (e.g., polymorphisms in human leucocyte an-
tigen genes) could confer an increased susceptibility for a neurolog-
ical autoimmune disorder,151 as observed for SARS-CoV-2 infection 
and GBS development.152 Other hypotheses considered are the con-
tribution of certain adenovirus (ChAdOx1 and Ad26) to the invasion 
of the peripheral nervous system, or the generation of anti-vector 
antibodies with cross-reacting potential with host molecules related 
to myelin or axons.148 A dual contribution in the case of vector vac-
cines is not discarded, such as the combination of the Spike protein 
and Ad vector (e.g., proinflammatory nature), which could lead to a 
stronger immune response in susceptible individuals and hence GBS 
development, compared to just the Spike with mRNA vaccines.

The classical clinical presentation of GBS includes sensory symp-
toms, such as paraesthesia, numbness, or pain. The main GBS sub-
types are acute inflammatory demyelinating polyradiculoneuropathy 
(AIDP) and acute motor axonal neuropathy (AMAN). When both 
motor and sensory fibers are affected, the subtype is named acute 
motor and sensory axonal neuropathy (AMSAN).134 Apart from the 
classical sensorimotor GBS, there are clinical variants and atypical 
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presentations; for example, in the paraparetic variant, weakness is 
restricted to the legs, and Miller Fisher syndrome comprises oph-
thalmoplegia, areflexia and ataxia. GBS variant limited to the cranial 
nerves may manifest as bilateral facial palsy with paraesthesia, while 
pure sensory or pure motor GBS variants also exist. Classical sen-
sorimotor GBS is the most frequent presentation (30%–85%), fol-
lowed by the pure motor variant (5%–70%), Miller Fisher syndrome 
(5%–25%) and the paraparetic variant (5%–10%).133

Disease progression is very rapid, and nadir (higher disability or 
severity) occurs within 2 weeks (maximum 4 weeks), reaching a pla-
teau phase of variable duration (weeks to months) before recovery 
starts.133,134 Mortality (3%–7%) usually occurs due to the involve-
ment of autonomic nervous system, which can lead to respiratory 
failure and/or cardiovascular complications (e.g., cardiac arrhythmias 
and blood pressure instability). Therefore, GBS progression should 
be closely monitored to prevent and manage complications.134,137

GBS cases following COVID-19 vaccination were diverse, but 
classical sensorimotor presentation and AIDP subtype predom-
inated.141,147,153 Bilateral facial weakness or paralysis was also a 
frequent encounter after Oxford/AstraZeneca and Janssen vac-
cination according to some GBS case series and reports.149,154–156 
The severity of GBS was variable, depending on damage extent to 
the motor, sensory and autonomic nerve fibers of the spinal roots, 
and peripheral and/or cranial nerves. Most cases reported a good 
outcome after treatment, nonetheless some individuals had a partial 
improvement or poor outcome.144

GBS diagnosis is based on clinical (including neurological), elec-
trophysiological (electromyography, nerve conduction velocity), and 
cerebrospinal fluid (CSF) examinations. It is recommended to start 
treatment, even before test results arrive, if one of these conditions 
is present: inability to walk 10 m independently, rapid progression of 
weakness, severe autonomic or swallowing dysfunction, or respira-
tory insufficiency.133 Commonly, there is albuminocytologic dissoci-
ation (i.e., normal cell counts and high protein levels) in the CSF.138 
Nerve conduction studies help to confirm the presence, pattern and 
severity of the neuropathy and distinguish between demyelinating 
and axonal GBS subtypes.136,137

Effective treatments include IVIg (0.4 g/kg body weight for 
5 days, preferably within 2 weeks from onset) or plasma exchange 
(200–250 mL plasma/kg in 5 sessions).133 Supportive care is import-
ant and involves monitoring of respiratory function, as well as cardiac 
and hemodynamic parameters, prophylaxis for deep vein thrombosis, 
management of possible bladder and bowel dysfunction, and early 
initiation of physiotherapy and rehabilitation. Despite treatment, 
many patients develop severe weakness and have a long disease 
course, often with incomplete recovery, pain, and fatigue.137

3.4.3  |  Transverse myelitis

Transverse myelitis (TM) is a neurological disorder characterized by 
inflammation of the spinal cord that results in sensory, motor and au-
tonomic dysfunction; its presentation can be acute or subacute and 

is associated with a diversity of aetiologies, such as infections (her-
pes virus type 2, varicella-zoster virus, cytomegalovirus, etc.), demy-
elinating diseases, systemic inflammatory autoimmune syndromes, 
paraneoplastic or vascular conditions, and vaccination.157,158 TM 
cases have been reported after hepatitis B, rubella, diphtheria-
tetanus, and rabies vaccines, among others, but a causal relationship 
has only been supported for oral polio vaccine.159

TM incidence is between 1.34 and 4.6 per million yearly, with 
peaks between ages 10–19 and 30–39 years, and no gender predis-
position.160 During an interim analysis of clinical trials of ChAdOx1 
nCoV-19 vaccine, three cases of TM were reported, one in the con-
trol group, one attributed to previously unrecognized multiple scle-
rosis (MS), and only one likely vaccine-related.161 Most TM cases 
reported in the literature have occurred following mRNA or vector 
viral vaccines.162 In a systematic review of the literature, Ostovan 
et al.163 identified 31 TM cases post COVID-19 vaccination (17 fe-
males and 14 males); most of them (24) came after the first dose. For 
Oxford-AstraZeneca vaccine, there were more cases (12), followed 
by Pfizer (8), Moderna (7), Sinopharm (3), and Janssen (1). About 
70% of patients had a good recovery; prognosis worsened with 
age and second dose, and although it was apparently more com-
mon in women, sex was not an outcome predictor.163 Supporting 
a possible link of TM and COVID-19 vaccines, an observational 
and retrospective study based on VigiBase, the WHO's pharma-
covigilance database, analyzed 500 individual case reports of TM 
between December 2020 and March 2022, considering 28 days as 
post-vaccination limit to the onset of TM symptoms.164 The larg-
est number of cases were reported after BNT162b2 (280), followed 
by ChAdOx1 nCoV-19 (95), mRNA-1273 (84), and Ad26.CoV2.S 
(42). Nguyen et al.164 suggested that despite the limitations of the 
study, including that incidence estimation could not be obtain be-
cause the lack of the exact number of individuals exposed to each 
vaccine, the statistical analysis favored an association between TM 
and both, mRNA-based (Pfizer and Moderna), and viral-vector based 
(AstraZeneca and Janssen) vaccines.

TM was not only registered after COVID-19 vaccination but 
also following SARS-CoV-2 infection; in the latter context, neu-
rological symptoms/signs seem to be more severe, reach the 
nadir in a shorter time, and be of higher occurrence in males.163 
Differences may be due, at least in part, to the magnitude of 
the stimulus, which is expected to be higher for infection than 
for vaccines. The potential vaccine-induced mechanism has not 
been elucidated but molecular mimicry of Spike or Ad vector pro-
teins with self-antigens (e.g., myelin) has been suggested.162,163 
Another mechanism to explain the development of autoimmunity 
is bystander activation, which could be induced by a vaccine com-
ponent like the adjuvant (e.g., mRNA per se, Ad vector). Bystander 
activation involves the unspecific (antigen-independent) activa-
tion of autoreactive lymphocytes (CD8+ T, CD4+ T, B cells) without 
T or B cells receptors (TCR/BCR) stimulation, instead mediated by 
signals that promote an inflammatory milieu, for example, ligands 
of co-stimulatory receptors, cytokines, and pathogen-associated 
molecular patterns.165 In the case of RNA-based vaccines, mRNA 
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may bind pattern recognition receptors before translation, such 
as Toll-like receptors TLR7 and TLR8, which could activate many 
pro-inflammatory cascades,166 enhancing cytokine production 
and further expansion of autoreactive T cells.167 Moreover, a 
pathogenic role of interleukin-6 (IL-6) has been found in myeli-
tis,168 and administration of both mRNA and viral vector vaccines 
induces an increase of several inflammatory markers, including 
this cytokine.169

The most common sign of TM is fever; early symptoms include a 
combination of sensory dysfunction (e.g., loss of thermal sensation), 
paraesthesia and/or pain in the back or extremities, motor weak-
ness (usually ascending) of the lower limbs. Autonomic dysfunction 
is manifested mainly as urinary retention/incontinence or bowel dis-
turbances. The progressive worsening of symptoms could take hours 
to days; nadir usually is reached at 7 days (up to 21), when at least 
two thirds of patients are unable to walk because of severe parapa-
resis or paraplegia.158

The importance of TM early identification lies in its debilitating/
incapacitating effects, which could lead to a permanent disability.167 
For TM diagnosis is central to demonstrate that the characteristic 
clinical dysfunctions (usually bilateral) are originating from the spi-
nal cord (Table  3); other diagnostic criteria are a defined sensory 

level and motor impairment progression to nadir between 4 h and 
21 days.157 Since TM has been associated with SARS-CoV-2 infec-
tion, it is essential to test for it. Differential diagnosis also would 
discard other probable infections (through specific serologic stud-
ies, CSF culture, PCR, chest radiography, etc.), neoplastic conditions, 
demyelinating diseases of the central nervous system like MS and 
neuromyelitis optica (NMO), among other causes of TM.157 A few 
cases of longitudinally extensive transverse myelitis (LETM), com-
prising three or more vertebral segments, have been reported too 
after AstraZeneca vaccine.171–173

Acute treatment of TM is based on administration of intravenous 
glucocorticoids to oppose the gene expression of inflammatory me-
diators, thus preventing a further damage to the spinal cord.158,170 
In post COVID vaccination TM, a high dose of intravenous meth-
ylprednisolone (1 g daily for 3–7 days) is recommended.174 When a 
refractory response occurs to a high dose of corticosteroids, plasma 
exchange can be helpful to remove autoreactive antibodies espe-
cially within 20 days of symptoms onset.158 For example, a patient 
with LETM positive to MOG antibodies did not respond to corti-
costeroids but to plasma exchange.173 In non-responsive cases, im-
munosuppressive therapy of T and B cells with cyclophosphamide 
maybe beneficial.158

TA B L E  3 Main serious neurological adverse events after COVID-19 vaccination.

Rare adverse event 
(identified risks) Clinical presentation and diagnostic criteria Proposed mechanisms

Vaccine platform(s) with more 
reported cases

Guillain–Barré 
Syndrome (Male > 
female, more cases 
within 50–69 years old, 
genetic predisposition)

Bilateral rapidly progressing weakness 
of limbs with hypo- or areflexia, possibly 
along with sensory symptoms (paresthesia, 
numbness, pain). Other manifestations in 
GBS variants depending on the affected limbs 
(paraparesis) or cranial nerves (e.g., facial palsy, 
ophthalmoplegia)
Symptoms onset within 42 days after vaccine 
(mostly first dose)
CSF analysis: albuminocytologic dissociation 
(before treatment start)
EMG and NCV studies indicative of a GBS 
subtype: demyelinating (AIDP) or axonal 
(AMAN, AMSAN)

Autoimmune 
process that leads to 
demyelination and/or 
axonal degeneration:
Molecular mimicry of 
Spike or adenoviral 
vector component with 
myelin or axon-related 
proteins

Adenoviral vector
•	 Oxford/
AstraZeneca124,141,145–147,149,154,156

•	 Janssen143,144,147,153,155

Transverse myelitis 
(prognosis worsens with 
age)

Fever, extremities or back pain, sensory 
deficits, bilateral motor (limb weakness, 
mostly progressive ascending) and autonomic 
dysfunction (bladder, bowel)
Spinal cord involvement (without compressive 
lesion) observed in MRI (T2 hyperintense 
signal)
Spinal cord inflammation: gadolinium 
enhancement in MRI, CSF pleocytosis or high 
abnormal protein
Rapid progression to nadir: 4–21 days
Exclusion of other causes: infectious, 
neoplastic, systemic and autoimmune, 
nutritional, vascular

Autoimmune-mediated: 
Molecular mimicry and/
or bystander activation

mRNA and Adenoviral 
vector162–164,170

•	 Pfizer/BioNTech and Moderna
•	 Oxford/AstraZeneca and Jansen
LETM
•	 Oxford/AstraZeneca171–173

Abbreviations: AIDP, acute inflammatory demyelinating polyradiculoneuropathy; AMAN, acute motor axonal neuropathy; AMSAN, acute motor 
and sensory axonal neuropathy; CSF, cerebrospinal fluid; EMG, electromyography; GBS, Guillain–Barré syndrome; LETM, longitudinally extensive 
transverse myelitis; NCV, nerve conduction velocity; MRI, magnetic resonance imaging.
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3.4.4  |  Other neurological serious adverse events

Other neurological adverse events have been registered with a lower 
incidence. In the continuum of TM, further demyelinating patholo-
gies such as NMO and MS have been documented after COVID-19 
vaccines.162 Likewise, new-onset seizures, encephalopathy, acute 
disseminated encephalomyelitis (ADEM), myasthenia gravis exac-
erbation, herpes zoster (onset/relapse), among others.125,174 Many 
of these disorders have been related with vaccines against other 
pathogens too174; however, most of the available studies are based 
on a small sample size, and temporal association is not sufficient to 
establish a causal association. The underlying mechanism potentially 
triggered by COVID-19 vaccines is unknown, but a combination of 
vaccine-related factors and susceptibility of the patients could be 
involved.162

4  |  DISCUSSION

The aim of this review is to highlight the main serious adverse 
events that may be associated with the COVID-19 vaccines al-
ready massively applied (Figure 1). It is premature to establish a 
causal relationship given that other criteria, such as consistency 
of evidence, strong statistical association, and specificity, should 
also be considered before establishing a causal relationship.175 
However, there has been significant advancement in many of these 
parameters, particularly through the valuable epidemiological and 
medical data collection by international and national surveillance 
systems, presented in case reports and series, and analyzed by 
diverse studies (e.g., retrospective, or prospective cohorts, sys-
tematic reviews, and meta-analysis). Likewise, basic and clinical re-
search studies of the pathophysiological mechanisms have made 
good progress. Hopefully, that will lead to a better understanding 

of these adverse events, their interactions and predisposition fac-
tors, which in turn will be useful to improve COVID-19 vaccine 
design and safety profiles. The goal would be to limit as much as 
possible the negative scenarios potentially related with each vac-
cine platform. Up to now, as many others have mentioned, the 
benefit of COVID-19 vaccination far exceeded the risks, since 
most of the population has not manifested these serious condi-
tions and instead, millions of lives have been saved. Nonetheless, 
efforts to monitor and register the negative cases following vac-
cination, through surveillance and health systems, must continue.

When these serious adverse events are of mild to moderate sever-
ity, full or partial recovery can be expected if treatment is opportune. 
As shown in this review, some adverse events are more frequent with 
specific COVID-19 vaccines platforms (Tables  2 and 3; Figure  1); this 
information can be helpful for vaccine selection or recommendation to 
specific population groups, especially if booster doses are required in the 
future. Some of these adverse events were observed after SARS-CoV-2 
infection too, usually with higher incidence or severity (e.g., myocarditis, 
GBS, TM). Many factors are involved when severe adverse events are 
presented after vaccination, in which the vaccine (e.g., platform, antigen, 
formulation) and host characteristics (e.g., genetic background, sex, age, 
comorbidities, and environment), interact to promote the manifestation 
of a particular event, especially those of autoimmune origin.

Given that all COVID-19 vaccines with a wide application around 
the world are based on Spike protein, one could think that differ-
ences in number of cases relate to the rest of the components in 
their formulation. However, it is difficult to establish strict and 
true comparations between data from different populations and 
vaccine platforms, and obviously it is important to consider that a 
higher number of doses have been administered for some of them. 
So far, the potential association between Ad vector vaccines and 
VITT seems to be the most sustained by large epidemiological data. 
Interestingly, Ad5-based vaccine CanSino has poorly been related to 

F I G U R E  1 Main serious adverse 
events after COVID-19 vaccination. 
Scheme summarizing the more reported 
serious adverse events in immune, 
cardiovascular, and nervous systems 
after massive administration of approved 
vaccines against SARS-CoV-2. There 
have been anaphylaxis and myocarditis 
cases after mRNA vaccines Comirnaty 
and Spikevax, while VITT (including 
CVST) and GBS cases after viral vector 
vaccines Vaxzevria and Jcovden. To a 
lesser extent, transverse myelitis has been 
registered for both viral vector and mRNA 
platforms. In contrast, serious adverse 
events documented after administration 
of inactivated virus and protein subunit 
vaccines have been few overall.
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this serious adverse event, suggesting that Ad vector type has also 
an influence to take into consideration.

A stronger immune response is important for the vaccine effi-
cacy, but in people with a weakened/exacerbated immune system 
or with chronic health problems and comorbidities, adverse effects 
may occur more likely with some vaccine platform than with others. 
Therefore, physicians should be aware of the possible serious ad-
verse events related to COVID-19 vaccines, to recognize them and 
make an early diagnosis.

Compared with COVID-19 vaccines based on Ad vector 
(Oxford/AstraZeneca and Janssen) and mRNA (Pfizer/BioNTech 
and Moderna) vaccines, serious adverse events incidence follow-
ing inactivated (Sinovac, Sinopharm and Bharat) and protein sub-
unit (Novavax) vaccines have been much lower so far (Figure  1). 
Therefore, although mRNA and vector vaccines offer advantages 
and higher efficacy, they might still need further improvements.

5  |  CONCLUSION

The close onset of adverse events following COVID-19 vaccina-
tion suggests an association, however, a causal relationship cannot 
only be sustained on temporality. Meanwhile, it is prudent to keep 
vigilant about its incidence and mechanisms, as the literature is 
quickly evolving. The identified risk factors for the development 
of each serious adverse event addressed here in the context of 
COVID-19 vaccination, as well as their predominant occurrence 
with certain vaccine platforms, could be useful for the decision 
making on which vaccine is more suitable on an individual and 
health status basis.
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