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Abstract

The covalent attachment of polyethylene glycol (PEG) to therapeutic agents, termed
PEGylation, is a well-established and clinically proven drug delivery approach to
improve the pharmacokinetics and pharmacodynamics of drugs. Specifically, PEGyla-
tion can improve the parent drug's solubility, extend its circulation time, and reduce
its immunogenicity, with minimal undesirable properties. PEGylation technology has
been applied to various therapeutic modalities including small molecules, aptamers,
peptides, and proteins, leading to over 30 PEGylated drugs currently used in the
clinic and many investigational PEGylated agents under clinical trials. Here, we sum-
marize the diverse types of PEGylation strategies, the key advantages of PEGylated
therapeutics over their parent drugs, and the broad applications and impacts of
PEGylation in clinical settings. A particular focus has been given to the size, topology,
and functionalities of PEG molecules utilized in clinically used PEGylated drugs, as
well as those under clinical trials. An additional section has been dedicated to analyz-
ing some representative PEGylated drugs that were discontinued at different stages
of clinical studies. Finally, we critically discuss the current challenges faced in the

development and clinical translation of PEGylated agents.

KEYWORDS
clinic, clinical translation, clinical trial, drug delivery, FDA, long-acting drugs, PEGylation,
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Translational Impact Statement

Over the past 30 years, PEGylation has gained immense popularity and has been proven to be a
widely applicable strategy for modifying therapeutics to improve pharmacokinetics and thera-
peutic efficacy. Recent advancements in PEGylation techniques, coupled with the necessity to
overcome challenges such as immunogenicity and polydispersity, present exciting opportunities
for the development of novel PEGylated therapeutics. This article provides a comprehensive
review of the history and progress of PEGylated therapeutics and emphasizes the significant
translational impact PEGylation has achieved. Looking ahead, newer PEGylated therapeutic
designs hold promising potential, underscoring the continuous growth and transformative

nature of this technique.
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1 | INTRODUCTION

PEGylation has emerged as a widely recognized technology for
enhancing the circulation time of various therapeutics, including pro-
teins and small molecules, leading to significant advancements in the
development of biologics and drug-loaded nanoparticles. Its impact
on the pharmaceutical industry is evident from the large number of
PEGylated drugs approved clinically, contributing to a market size
of multiple billion US dollars.? Notably, Neulasta® (Amgen), one of the
leading PEGylated products, generated sales revenue of $3.2 billion in
2019.5 Furthermore, PEGylated lipid nanoparticles (LNPs) were used
to formulate the mRNA-based COVID-19 vaccines, Comirnaty™ and
Spikevax®. In just 2 years, over 8 billion doses of these vaccines have
been procured and administered worldwide.®” These remarkable clini-
cal and commercial success stories of PEGylation have laid a strong
foundation for the further expansion of the clinical landscape of
PEGylated products, especially in the realm of biologics® and mRNA
therapeutics.”

In this review, we provide an overview of PEGylation and a com-
prehensive summary of PEGylated therapeutics that are either
approved by the U.S. Food and Drug Administration (FDA) or under
active clinical trials. Based on the definition of PEGyIation,10 we
restricted the PEGylated drugs to those therapeutic substances with
polyethylene glycol (PEG) molecules attached as “inert” carriers,
rather than as part of the active ingredient for the indications. We
included PEGylated nanoparticles (NPs), a key frontier of clinically
used PEGylated products, although in these cases PEG chains are con-
jugated to NPs, instead of the bioactive substances. We further dis-
cuss the challenges faced in the development of PEGylated drugs
from safety, scientific, technological, and translational perspectives as
well as some emerging solutions to address these challenges.

2 | OVERVIEW OF PEGYLATION: HISTORY
AND BENEFITS

21 | History

The idea of PEGylation was originally proposed by Frank Davis back
in the late 1960s to address the immunogenicity issue of non-human
derived proteins for human use.’* PEG was selected because it is the
hydrophilic part of a then clinically used block copolymer (Pluronic,
consisting of PEG and polypropylene glycol). He hypothesized that
the conjugation of PEG to proteins would render them unrecognizable
by the immune system as a foreign molecule, thus mitigating immune
response against them while enhancing their circulation and activity
lifetime. Subsequently, he and Abraham Aubuchowski published the
first research article on a PEGylated enzyme, bovine liver catalase,
showing that this modified enzyme did indeed have lower immunoge-
nicity and a longer circulation half-time.1>*® They continued their
work on PEGylation and in 1981 founded the first PEGylation com-
pany, Enzon. The first two PEGylated products to receive FDA
approval were Adagen™ (1990) and Oncaspar™ (1994), both marketed

by Enzon and using PEGylation to extend the half-life of the active
enzymes. Following these two early successes, there was a rapid rise
in the number of PEGylated products that entered the market, mark-
ing the introduction of different therapeutic modalities, different PEG
architectures as well as different PEG/drug ratios. The timeline and
evolution of PEGylation has been depicted in Figure 1 and the
FDA-approval trends of PEGylated drugs observed over the years are
shown in Figure 2a. In just over three decades, the field has seen the
approvals of the first PEGylated protein (Adagen™, 1990), the first
PEGylated liposome (Doxil®, 1995), the first PEGylated aptamer
(Macugen™, 2004), the first PEGylated antibody fragment (Cimzia™,
2008), the first PEGylated peptide (Omontys™, 2012), the first PEGy-
lated small molecule (Movantik™, 2014), the first PEGylated siRNA
therapeutic (Onpattro™, 2018) and notably, the two recent PEGylated
LNP-mRNA-based vaccines (Comirnaty™, 2021; Spikevax®, 2022).14
The PEGylation technology is rapidly evolving and new PEGylated
therapeutics are continuously emerging.*>~” It should be noted that
the global rollout of these PEGylated LNP-mRNA-based vaccines has
had a profound impact on the clinical landscape of PEGylation as a
drug delivery technology, since it demonstrated the possibility to
manufacture, distribute and administer billions of doses of PEGylated

nanoparticles to a massive population.

2.2 | Physicochemical properties and benefits

PEG, consisting of repeated ethylene oxide units, is highly hydrophilic
and flexible, due to the strong interactions between water molecules
and ether oxygens distributed along the polymer backbone. The high
hydration and flexibility of PEG are the molecular foundation for the
clinical benefits observed in the PEGylated products, in addition to
other properties such as non-toxicity and biocompatibility.*%*3

PEGylation was originally developed to shield proteins from the
immune system, because PEG and its bound water can form a flexible
hydrophilic shell to cover the antigenic determinants. As such, PEGy-
lation reduced the generation of neutralizing antibodies against the
enzymes and other adverse immune responses.'® This laid the founda-
tion for the development and subsequent approval of Adagen™ and
Oncaspar™. However, since then, the benefits of PEGylation have
been substantially expanded.

Pegintron™ and Pegasys™, two approved PEGylated products,
relied on PEGylation to extend the circulating half-life of the parent
proteins, interferons, for the treatment of Hepatitis C. The modifica-
tion of interferon alfa-2a with a 40 kDa PEG in Pegasys™ resulted in
sustained absorption and reduced renal clearance, subsequently lead-
ing to superior therapeutic efficacy to the free drug, interferon alfa-
2a.272% An increase in half-life of the free drug due to PEGylation is a
benefit that can be attributed to the increase in the hydrodynamic size
and subsequent decrease in renal filtration due to PEG conjugation.
This is a property that several marketed technologies have exploited,
including Somavert™ (half-life increase from 20 min to 72 h)?!
Neulasta® (from 3.5 to 15-80 h)??>2% and Krystexxa® (from <24 h to

2 weeks).2+2>
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(a) FDA approvals of PEGylated therapeutics
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(b) Modality of FDA-approved PEGylated therapeutics

5
NPs

(3NDAs,
2BLAs)

Small molecules
[ (NDAs)

Peptide

Small

RNA aptamer-

Small

molecule Total=38

Peptide

s,

Branched (2 arms) PEG
(P/ID<1)
[e.g., Omontys™ (2012)]

Linear (mono-functional) PEG
(P/D>1)
[e.g., Doxil® (1995)]

Wad
%

Linear (mono-functional) PEG
(P/D>1)
[e.g., Adagen™ (1990)]

T a Wa

Linear (dual-functional) PEG
(P/D<1)
[e.g., Empaveli™ (2021)]

Branched (4 arms) PEG
(P/D=1)
[e.g., Skytrofa™ (2021)]

(e) Representative PEG structures used in FDA-approved drugs

Linker
PEG

| —|
1
To/\%or\)kufx

e.g., Adagen™ (1990)
(X=Adenosine deaminase)

o] Drug

A,
@ war*»\(

e.g., Pegasys™ (2002)
(X=Interferon-a-2a)

FIGURE 2

S

fotg
oy

Movantik™ (2014)

Proteins
(BLAS)

@ /\%3—‘\0/\/\ J\/\ﬁ

: S

[e]
H 1l
\(\O/\aFOTN\/\’\E:Z}O/\O/\O

Nanoparticles

mRNA
(COVID-19
vaccine)

Chemotherapeutics

Proteins
Antibody fragment:

28

Factor

Interferon

Linear (mono-functional)

Linear (dual-functional)
Branched (2 arms)

(d) statistics of FDA-approved, PEGylated drugs
Branched (4 arms)
T 1

»
Bl BLAs
Multi-PEGylation BN NDAs
(PID>1)
Mono-PEGylation
(PID=1)
PEGyIated Multlmer

Number of FDA approved drugs

o
\N/\/\N/lko
| |

o
g BN

e.g., Skytrofa™ (2021)

(X=Human growth hormone)

o}

o}

DSPE-PEG2000, Used for Doxil® (1995)

FDA-approved PEGylated therapeutics. (a) The number of drugs approved per decade. (b) The modality of approved drugs.

PEGylated small molecules including peptides and RNA aptamer are approved as new drug applications. PEGylated proteins are approved as
biologics license applications. Depending on the modality of the encapsulated drug, PEGylated nanoparticles are approved as either new drug
applications or biologics license applications. (c) Types of PEGylation used in FDA-approved drugs. (d) Statistics of different types of PEGylation.
(e) Representative structures of PEG structures used in FDA-approved drugs. BLAs, biologics license applications; DSPE, 1,2-Distearoyl-sn-
glycero-3-phosphoethanolamine; FDA, the U.S. Food and Drug Administration; NDAs, new drug applications; NPs, nanoparticles; P/D, the molar
ratio of PEG to drug; PEG, polyethylene glycol.
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PEGylation has also been used to modulate the drug's activity at
the receptor level. For instance, Mircera™, a PEGylated epoetin-beta
product, has a slower association and faster dissociation rate from its
corresponding receptor as well as an increased half-life, all of which
contribute to its less frequent dosing regimen as compared to the par-
ent drug.?® Adynovate® is another example in which PEG plays a role
in changing the mechanism of action of the drug. Following
PEGylation, FVIII was found to retain all the physiological functions of
free FVIIl, with a reduced binding to the low-density lipoprotein
receptor-related protein clearance receptor, resulting in slower clear-
ance and prolonged circulation.?”

In the case of the small molecular drug, Movantik™ (naloxegol,
PEGylated naloxone), PEGylation was used to reduce its bioavailability
in the central nervous system (CNS). The presence of PEG in naloxe-
gol reduces its passive permeability when compared to free naloxone,
thus resulting in negligible penetration of the CNS via the blood-brain
barrier. PEGylation also makes naloxegol a substrate for the
P-glycoprotein receptor, the effect of which is an increased efflux of
naloxegol across the blood-brain barrier. This reduces opioid-induced
constipation in the gastrointestinal tract, while still retaining its central
analgesic effect.?®

The presence of PEG on the surface of the liposomal carriers in the
marketed product Doxil® has been shown to reduce their uptake by the
mononuclear phagocyte system (MPS), thus imparting “stealth” proper-
ties to the liposome and resulting in prolonged circulation time.?? In the
case of LNPs such as Comirnaty™ and Spikevax®, PEGylation is used to
enhance stability, decrease aggregation and protect the LNPs from
uptake by the MPS. It also provides a “stealth effect” that decreases
protein adsorption on the surface of nanoparticles.3°-32

To summarize, PEGylation has been shown to increase the molec-
ular mass and hydrodynamic sizes of small molecules and peptides,
play a role in receptor binding, decrease aggregation of nanoparticles,
and shield proteins and peptides from proteolytic enzymes and neu-
tralizing antibodies, thus improving pharmacokinetics of the drug.
This, in turn, has led to more effective and safer therapeutics with
increased patient compliance.

3 | FDA-APPROVED PEGYLATED
THERAPEUTICS

To date, a total of 38 PEGylated therapeutics have been approved by
the FDA as either new drug applications (NDAs) or biologics license
applications (BLAs) as listed in Table 1. The number of approved
PEGylated therapeutics is expected to grow rapidly, given the signifi-
cant pre-clinical research activities in the field of PEGylation and the
exponential growth of FDA-approval trends of PEGylated drugs
observed over the years (Figure 2a). In this section, we summarize the
modality of PEGylated therapeutics approved by the FDA, their
approved and investigational indications and types of PEGylation
(e.g., PEG topology and size) with the aim to provide a clinical land-
scape of current PEGylated drugs and a guideline for the further
design of PEGylated molecules.

3.1 | Modality of PEGylated drugs
Overall, the majority of PEGylated therapeutics®® are based on thera-
peutic proteins, with 28 PEGylated proteins received FDA approvals
(Figure 2b), accounting for 74% of approved PEGylated drugs and 93%
of the PEGylated BLAs. This is reasonable as the key motivation of
PEGylation is to increase the half-life of proteins. One major type of
protein that has succeeded in PEGylating is the growth factor, including
granulocyte colony-stimulating factor (G-CSF) (e.g., Rolvedon™,
Neulasta®, Nyvepria™, Ziextenzo™, Udenyca™, Stimufend®, Fulphila™,
and Fylnetra™) and erythropoietin (EPO) (e.g., Mircera™). Neulasta®
(pegfilgrastim), developed as a long-acting form of filgrastim, is the first
FDA-approved PEGylated G-CSF. Since its initial launch in 2002, there
have been six PEGylated G-CSF drugs approved as biosimilars to
Neulasta®. Udenyca™ (pegfilgrastim-cbqv), which is the historic second
biosimilar approved by the FDA, was further approved as an inter-
changeable biosimilar to Neulasta® in 2022.3% Rolvedon™ (eflapegras-
tim-xnst) is another novel, long-acting G-CSF, approved in 2022. Unlike
other PEGylated proteins, Rolvedon™ was developed using a dual-
functional PEG as a linear linker to connect the recombinant human
G-CSF analog with an Fc fragment of human immunoglobulin G4, which
was selected to increase its half-life and uptake to the bone marrow.3*
Therapeutic enzymes are another popular type of protein seeking
PEGylation, leading to the FDA approvals of seven PEGylated enzymes
so far. Enzymes used in these therapeutics include adenosine deami-
nase (Adagen™ and Revcovi™), L-asparaginase (Oncaspar™ and Aspar-
las™), a-Galactosidase A (Elfabrio®), phenylalanine ammonia-lyase
(Palynzig™) and uricase (Krystexxa®). Among them, Adagen™ used an
enzyme derived from bovine intestine and was discontinued due to the
shortage of the therapeutic enzyme. PEGylated interferons and coagu-
lation factors have also been developed as immunostimulant and anti-
hemorrhagic, respectively. Although antibody-based therapeutics have
received significant attention recently, only one PEGylated antibody
fragment (Cimzia™) has received FDA approval, presumably due to the
moderate necessity of extending the circulation time of such proteins.

In terms of small molecular drugs, five PEGylated drugs (including
peptides and RNA aptamer) have been approved as NDAs, as shown
in Figure 2b. Three of them are peptide-based therapeutics, including
pegcetacoplan (Empaveli™ and Syfovre™) as an immunosuppressant
and peginesatide (Omontys™) as an erythropoiesis stimulator. Another
notable PEGylated small molecular drug is Macugen™ (pegaptanib
sodium, Pfizer), which is a PEGylated aptamer, functioning as a selec-
tive vascular endothelial growth factor antagonist. It is the first
aptamer-based therapeutic approved for human use.> Besides these
novel therapeutics, Movantik™ (naloxegol) is the only PEGylated drug
consisting of a traditionally considered small molecule: naloxone
(Figure 2e). It was approved by the FDA in 2014 as an opioid antago-
nist. The short PEG moiety (7 repeating units) is introduced to reduce
the passive permeability of naloxone and thereby achieving negligible
penetration into the CNS.

Instead of directly conjugating to therapeutic molecules, attaching
PEG molecules to NP-based drug delivery systems has also been dem-

onstrated as an effective and feasible strategy to extend their half-life
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and provide stealth effect (Figure 2b). Since the first approval of
Doxil® (doxorubicin HCI liposome) by the FDA in 1995, another four
PEGylated NPs have been translated into the clinic, including the two
recent mRNA-based COVID-19 vaccines: Comirnaty™ and Spikevax®.
Doxil® and Onivyde™ are two PEGylated liposome formulations,
developed to formulate the chemotherapeutics doxorubicin and irino-
tecan, respectively. On the other hand, Comirnaty™, Spikevax® and
Onpattro® are LNP-based formulations for RNA therapeutics. For
Onpattro®, the active ingredient is small interfering RNA, which can
cause degradation of transthyretin mRNA via RNA interference,
thereby lowering the serum transthyretin protein levels. Onpattro®,
Doxil® and Onivyde™ were approved as NDAs, while Comirnaty™
and Spikevax® were approved as BLAs.

3.2 | Types of PEGylation
Over the years, a diverse set of PEG molecules and conjugation strat-
egies have been developed for PEGylation and many of them have
entered the clinic. In this subsection, we summarize different types of
PEGylation used in FDA-approved drugs by summarizing three struc-
tural parameters: PEG topology (i.e., linear or branched), PEG to drug
molar ratio (i.e., multi-, mono-, or PEGylated multimer) and sizes of
PEG and therapeutic agent (Figure 2c,d). These three parameters were
chosen because: (i) it is known that both the size and topology deter-
mine the hydrodynamic volumes of PEG, which further regulate the
circulation time and excretion routes of individual PEG molecules;
(ii) the circulation half-life of PEGylated molecules will thereby be
influenced by the hydrodynamic volumes of the individual PEG and
the number of PEG chains in each agent.®'° Some representative
PEG structures used in FDA-approved drugs are shown in Figure 2e.
Attaching multiple strands of linear, monofunctional PEG to one
therapeutic molecule represents the first generation of PEGylation
technology, which was used in developing the first two FDA-
approved drugs: Adagen™ and Oncaspar™. So far, a total of seven
drugs have been developed using this strategy, and all of them are
protein-based biologics. The most recent ones are Palynziq™ (pegva-
liase-pgpz), Revcovi™ (elapegademase-Ivlr), and Asparlas™ (calaspar-
gase pegol-mknl), approved by the FDA in 2018. The five PEGylated
NP-based therapeutics can also fall into this category since each NP is
multi-PEGylated with linear monofunctional PEG moieties. Another
multi-PEGylation strategy is based on linear, bifunctional PEG to cova-
lently crosslink two protein molecules, leading to the recently
approved biologic Elfabrio® (pegunigalsidase alfa-iwx) in 2023. It was
developed through reactions between N-hydroxysuccinimide on the
two ends of bifunctional PEG and the amines of lysine on proteins,
and about nine PEGs were attached to the homodimeric protein. It
was assumed that only a part of the nine bifunctional PEGs are
reacted on both sides for crosslinking and the rest of PEGs are
attached to the protein as dangling chains.2® Compared to the mono-
functional PEG-based conjugates, bifunctional PEG crosslinked pro-
teins showed a higher enzyme reactivity and stability in vitro.%®

Adynovate® (rurioctocog alfa pegol) is the only nonlinear PEG-based,

multi-PEGylated drug, that utilized a 2-arm branched PEG with the
size of 10 kDa on each arm.3” Based on its FDA-approved label, one
or more PEGs are conjugated to the parent protein, human coagula-
tion factor VIII. Overall, the sizes of PEGs used in this strategy are rel-
atively small (<10 kDa), with one exception, Palynziq™ (20 kDa PEGs).
Such multi-PEGylated proteins are generally heterogeneous in struc-
ture with a varied amount of PEG attached to proteins at non-specific
sites, representing one of the major technological limitations of such
PEGylation for clinical translation.

The approval of Pegintron™ (peginterferon alfa-2b, 2001) and
Neulasta® (pegfilgrastim, 2002) marked the initiation of site-specific
mono-PEGylation. This is an exciting phase of the PEGylation technol-
ogy that has received considerable attention in recent years. This
technology in principle can generate homogenous mono-PEGylated
products, which is generally preferred for large-scale manufacturing,
quality control and regulatory approval. The following two decades
witnessed the approval of another 10 mono-PEGylated drugs
using linear PEGs (Table 1), including the first and only small-
molecule-based PEGylated drug, Movantik™ (naloxegol, 2014). PEG
moieties in these drugs, except for Movantik™, are typically larger
(>12 kDa) than those for multi-PEGylation. Other than linear PEGs,
the first branched PEG-based mono-PEGylated drug, Pegasys™
(peginterferon alfa-2a), was approved in 2002. Such branched PEGs,
including a 4-arm branched one (used for Skytrofa™ (lonapegsomatro-
pin-tcgd)), have been used in a total of eight approved mono-
PEGylated drugs. Among them, only Jivi™ (damoctocog alfa pegol)
consists of a 60 kDa PEG, while others are all 40 kDa-sized PEGs.

Unlike multi- or mono-PEGylation mentioned above, attaching
multiple drugs onto one PEG molecule, resulting in a PEG/drug ratio
of <1, is another type of PEGylation. As listed in Table 1, three of such
PEGylated peptide-based therapeutics have been approved, and all of
them consist of two peptides connected to one PEG moiety. We
termed them as PEGylated multimers given that multiple drugs are
connected to one PEG molecule. Among these PEGylated multimers,
Omontys™ (peginesatide) has a 2-arm branched PEG with two pep-
tides attached at each side of the PEG, while pegcetacoplan
(Syfovre™ and Empaveli™) contains a linear PEG with two peptides
conjugated to both sides. This strategy is distinct and useful in
increasing the content of active substances in the product, especially
for small molecular entities.

Most of the PEG molecules that have the therapeutic conjugated
to one end, are unmodified at the other end and have an inert meth-
oxy group at the non-conjugated terminal. This is the case for all
PEGylated nanoparticles and majority of the PEGylated small mole-
cules and proteins. When the PEG is used as a linker between the
therapeutic as in the case of Elfabrio™, both the end groups of the
PEG originally functionalized with a bis-NHS ester are involved in
conjugation.

In terms of PEG sizes used for these PEGylation strategies, we
cross-compared the sizes of PEG and the corresponding active sub-
stance of these FDA-approved therapeutics and further categorized
them into six groups, as shown in Figure 3a. The two mRNA-based

COVID-19 vaccines (Spikevax® and Comirnaty™) were not shown,
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FIGURE 3 Groups of PEGylated agents based on sizes of PEG
and parent drugs. PEG sizes are segmented at 1 and 10 kDa (vertical
dash line), while the horizontal dash line indicates the largest
molecular weight of parent drugs (Patisiran, 14.3 kDa) approved as
NDAs. (a) FDA-approved PEGylated drugs span into five groups (I-V).
(b) Investigational PEGylated agents under active clinical trials
distributed in Group II-V. (c) Half-lives of native PEG molecules in
blood after intravenous administration depends on their sizes. Data
are based on a murine study from Reference 38. (PEG of 170 kDa is
out of the molecular weight range and thus is not shown here). The
solid line is fitted using a Sigmoidal model (4PL).

because the molecular weights of mMRNAs used were not found.
Movantik™ is the only PEGylated drug carrying a PEG moiety with
size of less than 1 kDa (Type I). While rare, this is an interesting type
of PEGylation that can potentially generate drugs with specific, prede-
fined chemical structures and identical sizes, given the commercial
access of monodisperse PEGs in this size range. However, further
efforts are needed to integrate such short PEGs with therapeutic
agents in a way that can achieve therapeutic benefits (e.g., improving
pharmacokinetics). PEG with moderate molecular weight (1-10 kDa)
are mainly used for multi-PEGylation (green circles in Figure 3a, Type
Il and V), except for Rolvedon™ (eflapegrastim-xnst). This is reason-

able as the half-lives of linear PEGs with size in this range are short as

shown in Figure 3c (data are based on a murine study after intrave-
nous administration).2® BLAs are the major type of such type of PEGy-
lated therapeutics (Type V), whereas three NDAs are approved for
PEGylated NPs (Type Il). Large PEG molecules with molecular weights
over 10 kDa (Type Ill and 1V) are the most popular PEGs used in clini-
cally approved therapeutics leading to 24 approved products. These
two squares (Type lll and IV) also have the most diverse types of
PEGylation, including 90% (19 out of 21) of approved mono-
PEGylated products (red circles in Figure 3a), all three PEGylated mul-
timer (blue dots in Figure 3a) and all eight branched PEG-conjugated
drugs (shaded area in Figure 3a). PEGs from this range are advanta-
geous for mono-PEGylation given its long circulation time as shown in
Figure 3c.

3.3 | Approved indications for PEGylated drugs

Hematological diseases dominate the approved indications of PEGy-
lated drugs (Table 1, Figure 4). A total of four coagulation factor-based
PEGylated drugs (i.e., Adynovate®, Jivi™, Rebinyn®, Esperoct®) have
been approved so far for the treatment of bleeding disorders: hemo-
philia A or B, after intravenous administration. For other hematologi-
cal disorders, one drug (Besremi™) was approved for conditions
involving elevated blood cell counts (i.e., polycythemia vera), and
11 products are developed to treat disorders with decreased numbers
of cells in the blood, including anemia (low levels of red blood cells),®?
paroxysmal nocturnal hemoglobinuria (hemolytic anemia and other

4041 and neutropenia (low levels of neutrophils).*? For

manifestations),
the indication related to neutropenia, eight PEGylated G-CSF were
approved to help with infections due to febrile neutropenia in patients
who are receiving myelosuppressive chemotherapy. Based on the clin-
ical studies, Neulasta® (pegfilgrastim, PEGylated G-CSF) functions as a
neutrophil growth factor, can restore neutrophil levels after a
once-per-chemotherapy cycle dosing (s.c.), while a daily injection of
non-PEGylated filgrastim is needed.??2® The two drugs approved for
anemia associated with chronic kidney disease, Omontys™ (peginesa-
tide) and Mircera™ (methoxy polyethylene glycol-epoetin beta), are
not recommended to treat anemia associated with chemotherapy
because of the increased mortality in related clinical trials. Omontys™
(peginesatide) was voluntarily recalled by the manufacturers in 2013,
because of serious acute hypersensitivity reactions and associated
fatalities (0.02%).%>** According to research performed later, such
hypersensitivity reactions are likely caused by subvisible nanoparticles
associated with phenol used in the commercialized multi-use vial for-
mulation, rather than the drug substance itself.4>=47

PEGylated drugs have been used to treat different types of cancers.
For instance, Sylatron™ (peginterferon alfa-2b) was approved as an
adjuvant therapy for melanoma after the primary treatment with sur-
gery.*® Doxil® (doxorubicin HCl liposome) has multiple indications
including ovarian cancer, acquired immunodeficiency syndrome (AIDS)-
related Kaposi's sarcoma and multiple myeloma (in combination with
bortezomib). Onivyde™ (irinotecan liposome) in combination with

5-fluorouracil and leucovorin is indicated to treat a type of pancreatic
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FIGURE 4 Therapeutic areas of FDA approved PEGylated therapeutics and those in active clinical trials.

cancer, named metastatic adenocarcinoma of the pancreas. It should be
noted that the indication for liposomal irinotecan (Onivyde™) is not
approved for non-liposomal irinotecan (Camptosar). Two PEGylated
L-asparaginase are developed for the treatment of acute lymphoblastic
leukemia through depleting plasma asparagine and thus selectively kill-
ing leukemic cells.

PEGylation has also been used to develop therapeutics for other
diseases with diverse indications, routes of administration and modes
of action as shown in Table 1 and Figure 4. Notable examples include
hepatitis B (Pegasys™), hepatitis C (Pegasys™ and Pegintron™),
rheumatoid arthritis (Cimzia™), gout (Krystexxa®), multiple sclerosis
(Plegridy™), and adenosine deaminase-deficient severe combined
immunodeficiency (Adagen™ and Revcovi™). Among them, peginter-
feron alfa-2a (Pegasys™), peginterferon alfa-2b (Pegintron™, for hepa-
titis C) and Certolizumab pegol (Cimzia™) are on the World Health
Organization's List of Essential Medicines. With direct antiviral agents
entering the clinic, peginterferon alfa-2b (Pegintron™) is not a recom-
mended treatment option for patients with hepatitis C.*”>° PEGylated
therapeutics are also developed as orphan drugs to treat rare diseases,
such as Palynzig™ (pegvaliase-papz) for phenylketonuria and Elfabrio®
(pegunigalsidase alfa-iwx) for Fabry disease. Palynzig™ is also consid-
ered as the first-in-class medication approved by the FDA.>! The
recent approval of Syfovre™ (pegcetacoplan) represents the first
FDA-approved treatment for geographic atrophy secondary to age-

related macular degeneration, a leading cause of blindness.>?>®

3.4 | Investigational indications for approved
PEGylated drugs

Given the commercial success of several approved PEGylated thera-

peutics, a considerable number of clinical trials have explored the use

of a currently approved therapeutic for an alternative indication. Since
approved therapeutics have already demonstrated their safety and
efficacy in humans through clinical trials, the investigation for their
approval for an additional indication follows a more straightforward
path than a new therapeutic. In addition, if commercialized, they will
likely meet good manufacturing practice (GMP) standards. We have
reviewed the current clinical trial landscape for previously approved
PEGylated therapeutics in Table 2.

The largest number of ongoing clinical trials are for the drug
Onivyde™, originally approved for the treatment of metastatic adeno-
carcinoma, marketed by Ipsen. These ongoing trials aim to either seek
approval for an additional cancer type or for a combination therapy
involving other anti-cancer agents. Ipsen is involved as a sponsor or
collaborator in clinical trials that are now actively exploring the role of
Onivyde™ for indications including small cell lung cancer, neuroendo-
crine carcinoma, high grade glioma, and biliary tract cancer. A few
other indications for which Onivyde™ is being investigated by other
companies include gastrointestinal cancer and childhood CNS tumor.
Doxil®, approved by the FDA in 1995 for ovarian cancer, multiple
myeloma and AIDS related Kaposi's sarcoma, still persists in clinical
trials for approvals for breast cancer, relapsed sarcomas and central
nervous system lymphomas. Other anti-cancer PEGylated therapeu-
tics investigated for additional indications include Oncaspar™ and
Asparlas™, both originally approved for acute lymphoblastic leukemia
and now being investigated for NK/T-cell lymphoma of nasal cavity
and pancreatic adenocarcinoma respectively.

In addition to cancer, three hematological drugs Besremi™ (origi-
nal indication: polycythemia vera), Fulphila™ and Neulasta® (original
indications: acute lymphoblastic leukemia) are in active clinical trials
for new indications including hepatitis D, aplastic anemia and type |
diabetes respectively. Krystexxa®, originally approved in 2010 for the
treatment of gout, is now being investigated for tumor lysis syndrome
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and type |l diabetes. The use of Cimzia™, originally approved in 2010
for inflammatory disorders is being extended to high-risk pregnancy
as well as additional inflammatory disorders like chronic plague psoria-
sis and juvenile idiopathic arthritis. Lastly, Roche's Pegasys™, originally
approved in 2002 for chronic hepatitis C warrants special attention as
it is now being investigated for a set of diverse indications that com-
prise myeloproliferative disorders, cutaneous squamous cell carci-

noma, and colon cancer.

4 | PEGYLATED AGENTS UNDER CURRENT
CLINICAL TRIALS

The success of PEGylated therapeutics in the clinic continues to
encourage and inspire new PEGylated products. In this subsection, we
provide a snapshot of the landscape of current clinical trials of new
investigational PEGylated agents as of May 2023 by searching on
clinicaltrials.gov using keywords of “PEG OR PEGylated OR Pegol OR
Polyethylene Glycol” and status of “recruiting, not yet recruiting,
active, not recruiting, or enrolling by invitation studies.” The returned
entries (over 800) were further screened manually to only include
those evaluating investigational PEGylated agents. A total of 82 active
clinical trials were identified and listed in Table 3. Figure 5 also sum-
marizes the overall analysis of these PEGylated agents.

41 |
products

Modalities of investigational PEGylated

Similar to the trend seen in approved products, the dominant modality of
PEGylated therapeutics being investigated in active clinical trials consti-
tutes proteins (Figure 5a). There are currently 52 active trials evaluating
PEGylated proteins, accounting for 63% of the total identified trials. Cyto-
kines and enzymes constitute the bulk of these investigational PEGylated
proteins, accounting for 40% (21) and 38% (20) of the trials respectively.
Given the success of approved PEGylated G-CSF products, a variation of
newer PEGylated G-CSF product is being tested in clinical trials. For
instance, while all the FDA-approved products use the amine aldehyde
conjugation to link G-CSF to PEG, the product HHPG-19 K utilizes the
thiol maleimide chemistry to link the N-terminus of the G-CSF to PEG.
New cytokines being investigated as therapeutics following PEGylation
include IFN A and recombinant interleukins. IFN X\ following covalent
attachment to a 20 kDa linear PEG molecule is being investigated for
COVID-19 and Hepeatitis D in five different clinical trials. While PEGylated
forms of IFN a-2a, IFN o-2b and IFN B-1a have been approved by the
FDA, PEGylated IFN A is not currently approved or authorized by the
FDA for use. Recombinant non-alpha interleukins (IL-2 to IL-8) have been
attached to a linear 30 kDa PEG via strain-promoted azide—alkyne click
chemistry and are currently being investigated in seven independent clini-
cal trials for different types of cancers. The PEGylated interleukin, THOR-
707, contains an unnatural amino acid to which the non-cleavable PEG
group is attached. This generates a homogenous, safer and more potent

IL-2 that can be administered intravenously.>*>> Following cytokines,

PEGylated enzymes are the most prominent proteins being investigated.
There are eight ongoing clinical trials for the novel anti-cancer enzyme,
Pegargiminase, which comprises arginine-deiminase (ADI) conjugated with
multiple PEG (linear, 20 kDa). The efficacy of this PEGylated enzyme is
determined by its ability to deplete circulating arginine levels.>® Additional
novel PEGylated enzymes in clinical trials and their investigated indica-
tions include hyaluronidase (cancer), human cystathionine B-synthase
(homocystinuria), urate oxidase (hyperuricemia), cobalt-substituted argi-
nase (Hyperargininemia), Erwinia asparaginase (leukemia) and cystathio-
nine y-lyase (homocystinuria). Other PEGylated protein modalities that
are in clinical investigation include hormones and antibody fragments.
One PEGylated coagulation factor (FVIII) and one PEGylated monoclonal
antibody (lulizumab) are also being investigated as an anti-hemophilic
agent and a Treg (regulatory T cell) modulator, respectively.

Small molecular PEGylated therapeutics account for 23% of the
total investigational PEGylated drugs. These drugs are balanced
between PEGylated small molecules (six clinical trials), oligonucleo-
tides (six clinical trials) and peptides (seven clinical trials). The PEGy-
lated small molecules are all anti-cancer agents (radgocitabine, SN38,
irinotecan, AZD4320 and Lu-177-DOTAGA-PEG-IAC) which are
PEGylated to improve the half-life of the therapeutic. An L-configured
aptamer and an anti-C5 RNA aptamer both of which prevent comple-
ment activation, and an RNA oligonucleotide for the treatment of
metastatic pancreatic cancer are the PEGylated oligonucleotides in
clinical trials. Among peptides, exenatide is actively evaluated in five
different clinical trials that involve the linkage of the peptide with two
different PEG topologies (50 kDa trimeric branched and 23 kDa lin-
ear). These PEGylated exenatide molecules are in clinical trials for the
treatment of Parkinson's disease and Type 2 diabetes. An erythropoie-
tin derived peptide and adrenomedullin are two other PEGylated pep-
tides in clinical trials that have not been explored previously.

Lastly, NPs contribute to 13% of the PEGylated drugs' clinical tri-
als, with one coagulation factor, six small molecules and four nucleic
acids under active investigation. A PEGylated liposome encapsulating
coagulation factor VIII is in Phase 2 trials as an anti-hemorrhagic
agent. PEGylated NPs with active small molecules and their investi-
gated indications include PEGylated liposome of all-trans retinoic acid
(solid tumor), PEGylated liposome of mitomycin-C (cancer), PEGylated
liposome of doxorubicin (solid tumor) and quercetin-encapsulated
PLGA-PEG NPs (oral cancer). Following the success of mRNA vaccines
encapsulated in PEGylated NPs for COVID-19, an mRNA vaccine for
influenza with a similar PEGylated NP structure is being investigated
in a Phase | study. Two CRISPR/Cas9 gene editing systems and an IL-
12 plasmid are the other nucleic acids that are part of investigational
PEGylated NP therapeutics.

4.2 | Type of PEGylations

Various types of PEGylation strategies have been utilized to synthe-
size these investigational PEGylated products, including similar strate-
gies used in the FDA-approved products and some novel PEG
structures. For multi-PEGylation (including PEGylated NPs), the
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(a) Modality of PEGylated agents under clinical trials (b) Type of PEGylation
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FIGURE 5 PEGylated therapeutics under active clinical trials. (a) The modality of investigational PEGylated drugs. (b) Types of PEGylation
used in FDA-approved drugs. (c) Phases of clinical trials. NPs, nanoparticles; P/D, the molar ratio of PEG to drug; PEG, polyethylene glycol.

majority of them use linear PEGs with three exceptions (i.e., NKTR-
214, AZD0466, and GEN-1). Among them, AZD0466 is a novel
dendrimer-based molecule construct containing multiple linear PEGs
and AZD4302, a small molecular drug, covalently attached to each
arm of the dendrimer.>” Aided by the monodispersed dendrimer, this
therapeutic agent features a defined polymer/drug ratio, specific drug
conjugation sites and identical sizes, significantly minimizing the phar-
macologic and structural heterogeneity issues faced by multi-
PEGylation.

Mono-PEGylated agents are the major type of products being
evaluated clinically, accounting for 60% of the active trials (Table 3
and Figure 5b). Among them, 29 trials involve linear PEG-based agents
and 17 trials contain products conjugated with branched PEGs. This
category includes some novel PEG structures that have not been used
in FDA-approved products. NLYO1 (PEGylated exenatide), for
instance, contains a trimeric PEG (3 arm branched) with molecular
weight of 50 kDa which is conjugated to exenatide, a GLP-1r ago-
nist.>® Conjugating trimeric PEG to the C-terminal of exenatide is

reported to be beneficial in prolonging the circulation half-life,

enhancing the receptor binding affinity and increasing proteolytic sta-
bility, compared to native or other PEGylated exenatide.>”*°

In addition to the aforementioned AZD0466, there are several
PEGylated agents containing multiple therapeutic moieties. EPO-018B,
for instance, consists of two peptide moieties conjugated to one end of
the 2-arm branched PEG. DFP-14927 contains a 4-arm PEG with the
therapeutic entity DFP-10917 (an analog of the nucleoside deoxycyti-
dine) attached at each end, leading to a PEG/drug ratio of 0.25.!
JK-12011, comprises three equivalents of irinotecan attached to a linear
20 kDa PEG via a biodegradable oligo-peptidyl linker.6? Unlike the short
PEG used in the approved product Movantik™, a 20 kDa PEG is used to
improve the pharmacokinetics and solubility of irinotecan. But because
of the long PEG chains used, a cleavable linkage between drug and
polymer is used to liberate the free drugs, enabling them to function at
the target cells. The trivalent conjugation design can improve the load
of active drugs in the final conjugate, another common issue faced by
the PEGylation of small molecule drugs.

Figure 3b summarizes the sizes of PEG used for conjugation and

the corresponding active pharmaceutical ingredient. No agents using
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short PEGs (up to 1 kDa) were found under active clinical trials, and
only 16 active trials evaluate PEGylated products using PEG with
moderate sizes (1-10 kDa). Of these, the majority are 2 kDa linear
PEGs to modify liposome or LNPs, containing either small molecular
drugs or biomacromolecules. The rest are 5 kDa PEG-based PEGy-
lated proteins, as used in the first FDA-approved product Adagen™.
PEG molecules with molecular weights over 10 kDa continue their
ascendance, accounting for 80% of the active trials listed in Table 3
and Figure 3b. Compared to the FDA approved products (Figure 3a),
an increased number of PEGylated small molecules in Type Ill are
being evaluated in the clinical trials (Figure 3b), indicating the strong
interests in using PEG to modify and deliver small molecular agents.
For Type IV PEGylated proteins, only 20 kDa PEGs are used for multi-
PEGylation, but PEGs with varied size (ranging from 12 to 43 kDa)
have been utilized to develop mono-PEGylated proteins. The Type IV
square also sees most Phase 3 clinical trials (11 trials) compared to
other types of PEGylation, potentially indicating a higher number of
PEGylated proteins entering the market in the near future.

4.3 | Investigational indications

Hematology and oncology are the two main therapeutic areas of
ongoing clinical trials, similar to that of FDA approved products.
Metabolism is the third area that has a significant proportion of active
clinical trials, a marked increase from its share in FDA approved PEGy-
lated products (Figure 4). Oncology dominates the therapeutic area by
accounting for 41% of the total clinical trials of PEGylated therapeu-
tics. Of these, the PEGylated non-alpha interleukin-2 (IL-2) named
THOR-707 are roughly 15.5 kDa interleukins conjugated to a single,
linear 30 kDa PEG molecule. These are being tested for different can-
cers in independent clinical trials, including classic Hodgkin lymphoma,
malignant melanoma, esophageal squamous cell carcinoma, gastric
cancer, colorectal cancer, plasma cell myeloma and pleural mesotheli-
oma. ADI-PEG-20 is an arginine deiminase molecule (46 kDa)
attached to 13-21 linear 20 kDa PEG molecules that is also being
tested in independent clinical trials for different types of cancers,
including acute myeloid leukemia, glioblastoma, hepatocellular carci-
noma, lung carcinoma, soft tissue sarcoma and uveal melanoma. In
addition, ThermoDox, a thermosensitive formulation of doxorubicin
in a PEGylated liposome, is being investigated for soft tissue sarcoma
in Phases 1 and 2.

For metabolic disorders, six investigational PEGylated products
are studied in active clinical trials to address enzyme deficiencies in
certain diseases, including hyperargininemia (arginase deficiency),
homocystinuria (cystathione beta synthase deficiency), hyperuricemia
(urate oxidase deficiency). Due to the role of ADI-PEG-20 in cataboliz-
ing arginine and improving insulin sensitivity, it is being tested as a
treatment for obesity. Lastly, a PEGylated form of the anti-diabetic
peptide exenatide is in four independent clinical trials for the treat-
ment of Type 2 diabetes.

Hematological indications make up roughly 12% of the total

investigated indications for PEGylated agents in active clinical trials.

PEGylated G-CSF is active in four different clinical trials to treat neu-
tropenia associated with chemotherapy. This is likely due to the com-
mercial success of FDA approved PEGylated G-CSF. The two
antihemophilic agents in clinical trials include FVIII in a PEGylated
liposome and a PEG recombinant FVIII-Fc fusion protein. To treat
polycythemia vera, two variations of PEGylated IFN a-2b are under
investigation. Finally, for the treatment of anemia, a PEGylated EPO
and a PEGylated EPO derived peptide are under clinical investigation.
Thus, all trials in the therapeutic area of hematology recapitulate indi-
cations that already have an FDA approved product, namely neutro-
penia, hemophilia, polycythemia vera and anemia.

In addition to these major therapeutic areas, other diverse indica-
tions fall in the realm of inflammation (gout and hepatitis), immunol-
ogy (prevention of transplant rejection and complement inhibition),
and infectious disease (COVID-19 and influenza). The detailed break-
down of investigational PEGylated therapeutics based on therapeutic

indication is shown in Table 3 and Figure 4.

44 | Stages of clinical trials

Current clinical trials of investigational PEGylated agents span from
Phase | to Phase lll, as shown in Figure 5c and Table 3. This sub-
section aims to highlight novel PEGylated agents that just entered
clinical trials, as well as those showing promising results in the later
stage of clinical trials.

A total of 26 PEGylated products are under Phase | clinical trials
(in 35 trials, including 13 trials indicated for both Phases | and Phase
I). Among them, a novel PEGylated fibroblast growth factor 21 analog
(B1344) is developed to treat nonalcoholic steatohepatitis, a common
disease without approved medications.®®®* Other notable products in
this stage include a PEGylated small molecule (i.e., DFP-14927) for
patients with solid tumors, a novel liposomal formulation of doxorubi-
cin (i.e, TLD-1), and two CRISPR/Cas9 gene editing systems
(i.e., NTLA-2001 and NTLA-2002).

Of the 43 Phase Il ongoing clinical trials (including those with
additional phases), about 65% are assessing PEGylated proteins.
THOR-707, for instance, is a novel PEGylated investigational IL-2 in
seven active clinical trials (Table 3).°> From their interim clinical data,
THOR-707 is tolerated by cancer patients and showed antitumor effi-
cacy, especially in increasing CD8 T and NK cells treated with or with-
out pembrolizumab and cetuximab.®® There are eight PEGylated small
molecules and five PEGylated NPs that have entered Phase Il clinical
trials, including the two camptothecin derivative-based antitumor
drugs (i.e., PLX038 and JK-1201l), and a PLGA-PEG NP-based formu-
lation with quercetin encapsulated.

While no PEGylated NP-based therapeutic agents are found
under active Phase Il clinical trials, 3 PEGylated small molecules
(5 trials) and 8 PEGylated proteins (14 trials) have moved forward to
Phase Il trials (Table 3). Among them, Zimura is a novel mono-
PEGylated anti-C5 RNA aptamer, developed as a complement C5
inhibitor for treating geographic atrophy secondary to age-related

macular degeneration.®” While no results have been posted yet, the
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FDA has granted Breakthrough Therapy and Priority Review status
for Zimura, underscoring its high promises in treating these patients
over the current therapies.®®%” Another notable product is AEB1102
(Pegzilarginase). It is a multi-PEGylated cobalt-substituted human
enzyme arginase 1,’° developed for patients with arginase | defi-
ciency.”* AEB1102 has received multiple FDA designations such as
Fast Track, Breakthrough Therapy, Orphan Drug, and Rare Pediatric
Disease.”> While the primary endpoint of the current Phase IlI trial
has been met based on a report from the sponsor, Aeglea
BioTherapeutics,73 in 2022, FDA issued a Refusal to File letter for
pegzilarginase, requesting additional information on its effective-
ness.”* Other intriguing agents in this stage include PEGylated argi-
nine deiminase (pegargiminase) for soft tissue sarcoma’® and
hepatocellular carcinoma,”® PEGylated IFN A (peginterferon lambda-
1A) for hepatitis D’778 and COVID-19,”° and PEGylated anti-CD40L
Fab' antibody fragment (Dapirolizumab pegol) for systemic lupus

erythematosus.®°

5 | SELECT FAILURES

Despite the notable achievements of PEGylated agents in the pharma-
ceutical industry, it is important to acknowledge that many investiga-
tional PEGylated agents failed in getting regulatory approval. This
subsection aims to analyze some representative PEGylated agents
that have been discontinued either because they cannot improve the
effectiveness over the control group, or because of potential side
effects, as summarized in Table 4.

Although using PEGylation to extend therapeutic circulation time
has been particularly fruitful for biopharmaceuticals, a number of
PEGylated proteins failed to show superiority during clinical studies.
For instance, developing a long-acting human growth hormone for the
treatment of growth hormone deficiency has been explored for many
years, leading to one product, Skytrofa™ (Lonapegsomatropin-tcgd),
receiving FDA approval in 2021. However, at least three PEGylated
human growth hormones have been discontinued during the clinical
studies. The clinical trial for ARX201, developed by attaching a
30-kDa PEG to growth hormone, was stopped, since studies showed
the accumulation of PEG in choroid plexus epithelial cells,2* which has
been widely discussed in terms of the safety of PEGylated products
(as mentioned below).%” Similarly, the study of PHA-794428, a recom-
binant growth hormone conjugated with a 40 kDa branched PEG, was
terminated due to the occurrence of injection-site lipoatrophy, which
was presumably due to the lipolytic effects of growth hormone. 822
In the case of FDA-approved product, Skytrofa™, a 4-arm branched
PEG was attached to the human growth hormone via a cleavable
TransCon linker that can release human growth hormone after injec-
tion and no difference was found in terms of injection site reactions,
compared to unmodified growth hormone,2* implying that a releas-
able PEGylation design is indeed beneficial for this type of therapeutic
protein. While PEGylation of interleukins showed favorable
pharmacokinetics,®>% two PEGylated interleukins: PEGylated IL-2
(Rezpegaldesleukin) and PEGylated IL-10 (Pegilodecakin), were

unsuccessful in meeting their primary endpoints for treating systemic
lupus erythematosus® and pancreatic cancer,?” respectively.

The clinical translation of PEGylated small molecules, in particular
chemotherapeutics, represents one challenging task in the field of
PEGylation. Pegamotecan, for example, is one of the early develop-
ments of PEGylated chemotherapies to improve solubility, safety, and
potency of camptothecin. Its Phase 2 clinical trial was terminated due
to its similar toxicity profile compared to irinotecan.®® From the PEGy-
lation point of view, pegamotecan consists of two equivalents of
camptothecin attached to the two ends of a 40 kDa PEG. Although
camptothecin can be released via hydrolysis,®’ the large PEG size used
contributes to 98% of the molecular mass of the final conjugate. Thus,
a significant amount of conjugates are needed to be administered to
achieve the intended drug dosages. While using short or multi-arm
PEG can address this limitation, etirinotecan pegol, a product using a
4-arm 20 kDa PEG with one drug molecule attached to each arm,
failed to show efficacy in proving overall survival in treating breast
cancer with brain metastases. Another recently discontinued PEGy-
lated small molecule is oxycodegol which contains a short, specific
PEG chain attached to oxycodone. Although Phase I-1ll studies dem-
onstrated its safety and therapeutic potentials in treating pain, it failed
to get FDA approval due to concerns about its potential for misuse or
abuse, potential effects when snorted or injected, and risk for liver
toxicity.”®

In terms of PEGylated NPs, LiPlaCis is a PEGylated liposomal cis-
platin, which failed to improve the safety of standard cisplatin
formulations based on Phase I/l studies.”® MM-302, a novel
HER2-targeted, PEGylated liposomal doxorubicin with anti-HER2
antibody attached on the liposomal surface, was developed to treat
HER2 Positive Breast Cancer, but failed to meet its primary endpoint

of progression-free survival.?%%2

6 | CHALLENGES

While PEGylation is being widely used and explored for drug modifi-
cations, there are some potential challenges in clinically translating
PEGylated products, which need to be considered in order to further
advance the field of PEGylated therapeutics. In this subsection, we
highlight the issues associated with the use of PEG molecules
(e.g., safety and immunogenicity), the scientific and technological
obstacles of PEGylation, and the challenges associated with regulatory

approvals.

6.1 | Safety and immunogenicity

Although PEG was historically considered to be a biologically inert
material, recent studies have shown that approximately 20%-70% of
humans with no known PEG exposure have anti-PEG antibodies that
can recognize the polymer.”*=%7 In addition, owing to the daily expo-
sure to products containing PEG such as cosmetics, pre-existing

anti-PEG antibodies are also present in many healthy humans.””?®
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As a result, reports have indicated loss of therapeutic efficacy due to

the immune response elicited by the PEGylated therapeutics®®1%° by

causing accelerated blood clearance and a reduction in half-life.1°1-104
Additionally, hypersensitivity reactions, which are a set of undesirable
reactions caused by the immune system to PEGylated drugs have been
reported, further drawing attention to the risks associated with the PEG
component of PEGylated therapeutics.*® Such infusion reactions or
CARPA (Complement activation-related pseudoallergy) have been seen
after the administration of Jivi™, where patients developed anti-PEG
antibodies and hypersensitivity reactions like urticaria, angioedema and

106 1t is worth noting that these adverse reactions are seen not

dyspnea.
only in PEGylated proteins, but also in PEGylated NPs. For instance,
45% of cancer patients who received Doxil® developed hypersensitivity
reactions that included shortness of breath, flushing, and dizzi-
ness.1%71% For the recently approved Pfizer/BioNTech BNT162b2 and
Moderna mRNA-1273 vaccines, several cases with PEG-related allergic
reactions have been reported, with and without anaphylaxis, the symp-
toms of which include hives, diarrhea, dizziness, shortness of breath and
irregular heart rate.1°1%? The factors influencing adverse reactions to
PEG such as the molecular weight of PEG, morphological properties,
surface charge and route of administration have been summarized in

recent reports.1%¢110-112 Finally,

PEG associated cytoplasmic vacuola-
tion has also been observed after the administration of PEGylated
drugs, such as Cimzia™ and Somavert™, giving rise to accumulation of
PEG in cells.1*31%* Although severe side effects of such vacuolation
have not been reported, the consequence of long-term accumulation in
cases of life-long therapies remains to be seen.

As a result of growing concerns about PEG's immunogenicity,
there have been efforts in search of alternatives to PEG in order to
address some of these deficiencies. Some of the commonly explored
alternatives include known biocompatible polymers like polyvinylpyr-
rolidone (PVP) and poly(2-oxazoline). For instance, PVP is an attractive
alternative to PEG owing to properties like high hydration, good bio-
compatibility and low immunogenicity. However, its use is limited by
its non-biodegradability and poorly understood immunological proper-
ties.1*®> Polyoxazolines, which are thermosensitive polymers having
good solubility in both organic and aqueous solvents have been
grafted to several NPs to provide stealth properties. However, the dif-
ficulty and high cost of synthesis acts as a major barrier to its use as a
PEG alternative.'*®'” Other explored alternatives to PEG include
hydrophilic polymers like polyglycerols, poly(N-(2-Hydroxypropyl)
methacrylamide) (PHPMA), natural polymers like glycosaminoglycans
(GAGSs) and zwitterionic materials like poly(carboxybetaine). However,
their usage as a PEG alternative has been restricted by several limita-
tions which have been reviewed elsewhere.*?15 |n addition to using
polymers, PASylation (Pro, Ala, Ser) and XTENylation (Ala, Asp, Gly,
Pro, Ser, Thr) are strategies in which peptide chains are used as linkers
or half-life enhancing agents.?'®1'? A recombinant antihemophilic
product that makes use of XTEN called ALTUVIIIO has been recently
approved by the FDA.2° However, despite comparable physicochem-
ical and pharmacological properties to PEG, most of these PEG alter-
natives have demonstrated varied

immunological properties,

indicating that the alternatives are not immunologically inert.*2

6.2 | Scientific and technological challenges
PEGylation as a technology has significantly evolved over the past three
decades, overcoming numerous technological obstacles along the way.
The field has progressed from the random, multi-PEGylation using short
and linear PEG molecules, as used in the first PEGylated protein
(i.e., Adagen™), to site-specific PEGylation using diverse types of PEGs
(e.g.,, sizes and topologies). Nevertheless, there are still several scientific
and technological challenges that require careful consideration. One of
them is the polydisperse nature of PEG molecules. Similar to many other
polymers, commercial PEGs are generally polydisperse homologous mix-
tures spanning a wide range of molecular weights. This heterogeneity in
molecular size of the PEG is passed on to the PEGylated therapeutics and
could be further amplified if multiple and random amounts of PEGs are
conjugated to each therapeutic entity. Such a polydisperse mix of PEGy-
lated therapeutics then leads to batch-to-batch variations in crucial prop-
erties including solubility, clearance rate, binding affinities, posing
challenges for manufacturing and quality control and thus creating new
hurdles for regulatory approvals. A solution to this challenge would be to
use monodisperse PEGs, which are only available commercially for low
molecular weight PEGs (e.g., <1 kDa). Developing monodisperse PEGs
with higher molecular weights that have generally been sought for PEGy-
lation is one urgent task for generating homogenous, monodisperse
PEGylated therapeutics, a topic that has been enthusiastically pursued in
the PEGylation field in recent years.

The covalent conjugation of PEGs to therapeutic agents leads to
another inherent challenge, which is the potential detrimental effect
on their activity and therapeutic potency. The access of the substrate
to the active site of the drug can be hampered by the presence of
PEG. The affinity of the drug to its target site may also be reduced
due to changes in conformation and surface electrostatic charge.
Studies have shown that based on the PEGylation method and molec-
ular weight of the PEG, the activity retained by the PEGylated product
can vary between 7% and 98%.12! Another study showed that the
activity of a 19 kDa IFNa-2a was reduced to 7% after it was conju-
gated to multiple 40 kDa PEGs.'?? This was attributed to the PEGyla-
tion sites being located near active sites. This puts emphasis on the
fine control of PEGylation sites and conjugation methods in general.
Although site-specific PEGylation can be achieved nowadays through
using judiciously selected chemistries, or using enzymes, or introduc-
ing non-natural amino acids with proper reaction handles into

proteins,>>123

identifying the conjugation site with minimal compen-
sation on its activity remains the principal challenge for PEGylating
proteins. Computational simulation could be an useful tool to predict
the potential activity loss after site-specific PEGylation.124125

The need for PEGylation of traditionally considered small mole-
cule drugs is pressing, given that many effective small molecule drugs,
such as irinotecan,*?® suffer from undesirable pharmacokinetic pro-
files.*?” However, the success rate of clinical translation of PEGylated
small molecules is extremely low, thus indicating that several obsta-
cles remain to be addressed. Although no apparent technological con-
straints hamper PEGylating traditional small molecule drugs, there are

several drawbacks that make PEGylation a less desirable strategy for
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modifying small molecule drugs. First, small molecule drugs generally
resist chemical modifications due to the limited functionalities and the
tight structure-activity relationships. Conjugating large molecular
weight PEGs to small molecule drugs leads to reduced fractions of
active drugs in the final conjugates, as mentioned in the case of Pega-
motecan. These issues, together with the polydispersity nature of PEGs,
need to be considered when designing new PEGylated small molecules.
An increase in the understanding of the structure-activity relationships
of both PEGylated and native drugs in the clinic will certainly lay a
strong foundation for selectively modifying these small molecules.
Unlike the post-translational modification of macromolecules, PEGyla-
tion of small molecules should be integrated during the drug synthesis
given their generally low chemical modification sites. Using releasable
conjugation bonds and multifunctional PEGs may also become neces-
sary for such types of drugs, but it leads to another set of questions on
how to control the timing and location of drug release without losing

the benefits of PEGylation in modulating their pharmacokinetics.

6.3 | Regulatory considerations

In addition to the aforementioned issues, there are further challenges
associated with the regulatory approval process. One of them is that
these chemically modified therapeutics are generally considered as new
drugs or new biologics, regardless of the clinical status of the parent
drugs and PEG molecules. Although a rigorous regulatory approach and
comprehensive clinical evaluations are vital for ensuring patient safety,
the lengthy and costly nature of this process represents a significant
barrier to the development of new PEGylated therapeutics. A notewor-
thy advancement in this field is the FDA-approval pathway for biosimi-
lars, which allows manufacturers to focus on demonstrating similarity of
their proposed agents to FDA-approved reference products. This
streamlined approach allows for accelerated approval without the need
to establish the biosimilar's safety and effectiveness independently. A
handful of PEGylated proteins have already obtained approval as biosi-
milars (e.g., Nyvepria™, Ziextenzo™, Udenyca™, Stimufend®, Fulphila™,
and Fylnetra™), contributing to the expedited clinical translation of
PEGylated biologics. Furthermore, the concept of non-covalent PEGyla-
tion holds promise in offering similar benefits without the need for
chemical modification, thus substantially reducing translational barriers
associated with regulatory approval.

Additionally, the concept of non-biological complex drugs'?® is
expected to mitigate the impact of issues related to the polydispersity of
PEGs. The FDA is also currently engaged in discussions regarding the eval-
uation of therapeutic equivalence for complex products, which encompass
drugs with complex active ingredients (e.g., polymeric compounds) that

are challenging to fully characterize, identify, and quantify.*2? 13!

7 | CONCLUSION

PEGylation is a widely recognized and successful technology for

extending the half-life of therapeutic agents, having achieved

remarkable clinical and commercial accomplishments. Since the FDA
approval of the first PEGylated protein, Adagen™, in 1990, many
PEGylated therapeutics have been approved and used in the clinic to
treat a variety of diseases. To date, PEGylation technology has been
applied to nearly all kinds of therapeutic agents including small mole-
cules, nucleotides, peptides, proteins and NPs, consistently demon-
strating clinical advantages in improving their pharmacokinetics and
pharmacodynamics. This clinical progress of PEGylation is accompa-
nied by significant advancements in the PEGylation design, making it
possible nowadays to achieve site-specific PEGylation using PEG mol-
ecules with desirable sizes, topologies and PEG/drug ratios. Ongoing
active clinical trials testify to the continual evolution of PEGylation
technology, with novel PEGylated agents continuously emerging.
While challenges such as the polydisperse nature of PEG and the
immunogenicity profile of PEG molecules exist, PEGylation remains
the most cost-effective and safest option for extending the half-life of
therapeutics, especially when compared to alternative polymers/tech-
nologies. This is evident in the extensive use of PEGylation in human
patients over several decades and its recent successful application in
large-scale administration of PEGylated LNPs-based COVID-19 vac-
cines to the general population. These achievements underscore the
favorable properties and proven track record of PEGylation as a valu-
able approach in therapeutic development.

Looking ahead, PEGylation will continue to have a tremendous
impact on the development of new therapeutic agents, offering not
only half-life extension but also many other benefits. The field will
certainly be driven by the rapid expansion of macromolecular drugs
(such as proteins and peptides), as well as the emergence of LNP
encapsulated mRNA therapies. PEGylation is also anticipated to play a
vital role in the development of other novel therapies such as immu-
notherapies or combinational therapies by enabling the conjugation of
different therapeutic agents onto a single PEG molecule. The progress
of the field will also be facilitated by the advancements in the synthe-
sis of monodispersed PEG with diverse architectures, as well as the
commercial availability of PEG products and conjugation chemistries
that are already established for clinical use. Thus, overall, the future of
PEGylation holds immense promise in driving innovation and advance-

ments in therapeutic agent development.
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