

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Journal Pre-proof

Updated Guidance Regarding The Risk of Allergic Reactions to COVID-19 Vaccines and Recommended Evaluation and Management: A GRADE Assessment, and International Consensus Approach

Matthew Greenhawt, MD, MBA, MSc, Timothy E. Dribin, MD, Elissa M. Abrams, MD, MPH, Marcus Shaker, MD, MSc, Derek K. Chu, MD, PhD, David BK. Golden, Cem Akin, MD, Akerini Anagnostou, Faisal ALMuhizi, MD, Waleed Alqurashi, MD, Peter Arkwright, MD, PhD, James L. Baldwin, MD, Aleena Banerji, MD, Philippe Bégin, MD, Moshe Ben-Shoshan, MD, MSc, Jonathan Bernstein, MD, Theresa A. Bingeman, MD, Carsten Bindslev-Jensen, MD, PhD, DMSci, Kim Blumenthal, MD, MPH, Aideen Byrne, FRCPC PhD, Julia Cahil, BScPhm ACPR MPH, Scott Cameron, MD, Dianne Campbell, MD, PhD, Ronna Campbell, MD, PhD, Michael Cavender, DO, Edmond S. Chan, MD, Sharon Chinthrajah, MD, Pasquale Comberiatti, MD, Jacqueline J. Eastman, MD, Anne K. Ellis, MD, MSc, FRCPC, David M. Fleischer, MD, Adam Fox, MD, FRCPC, Pamela A. Frischmeyer-Guerrero, MD, PhD, Remi Gagnon, MD, MSc, Lene H. Garvey, MD, PhD, Mitchell H. Grayson, MD, Ghislaine Annie Clarisse Isabwe, MD, Nicholas Hartog, MD, David Hendron, DO, Caroline C. Horner, MD, MSCI, Johnathan O'B Hourihane, MD, Edward Iglesia, MD, MPH, Manstein Kan, MD, FRCPC, Blanca Kaplan, MD, Constance H. Katelaris, AO MB BS PhD FRACP, Harold Kim, MD, John M. Kelso, MD, David A. Kahn, MD, David Lang, MD, Dennis Ledford, MD, Michael Levin, MD, PhD, Jay A. Lieberman, MD, Richard Loh, MD, Douglas P. Mack, MD, MSc, Bruce Mazer, MD, Ketan Mody, MD, Gissele Mosnaim, MD, MS, Daniel Munblit, MD, PhD, S. Shahzad Mustafa, MD, Anil Nanda, MD, Richard Nathan, DO, John Oppenheimer, MD, Iris M. Otani, MD, Miguel Park, MD, Ruby Pawankar, MD, Kirsten P. Perrett, MBBS, FRACP, PhD, Jonny Peter, Elizabeth J. Phillips, MD, Matthieu Picard, MD, FRCPC, Mitchell Pitlick, MD, Allison Ramsey, MD, Trine Holm Rasmussen, MD, Melinda M. Rathkopf, Hari Reddy, MD, Kara Robertson, MD, FRCPC, Pablo Rodriguez del Rio, MD, PhD, Steven Sample, MD, Ajay Sheshradi, MD, MSCI, Javed Shiek, MD, Sayantani B. Sindher, MD, Jonathan M. Spergel, MD, PhD, Cosby A. Stone, MD, David Stukus, MD, Mimi LK. Tang, MBBS, PhD, James M. Tracy, DO, Paul J. Turner, BM, BCh, FRACP, PhD, Timothy K. Vander Leek, MD, Dana V. Wallace, MD, Julie Wang, MD, Susan Wasserman, MSc, MD, David Weldon, Anna R. Wolfson, MD, Margitta Worm, MD, Mona-Rita Yacoub, MD

PII: S0091-6749(23)00746-7

DOI: <https://doi.org/10.1016/j.jaci.2023.05.019>

Reference: YMAI 15981

To appear in: *Journal of Allergy and Clinical Immunology*

Received Date: 12 April 2023

Revised Date: 8 May 2023

Accepted Date: 11 May 2023

Please cite this article as: Greenhawt M, Dribin TE, Abrams EM, Shaker M, Chu DK, Golden DB, Akin C, Anagnostou A, ALMuhizi F, Alqurashi W, Arkwright P, Baldwin JL, Banerji A, Bégin P, Ben-Shoshan M, Bernstein J, Bingeman TA, Bindslev-Jensen C, Blumenthal K, Byrne A, Cahil J, Cameron S, Campbell D, Campbell R, Cavender M, Chan ES, Chinthurajah S, Comberiatti P, Eastman JJ, Ellis AK, Fleischer DM, Fox A, Frischmeyer-Guerrero PA, Gagnon R, Garvey LH, Grayson MH, Clarisse Isabwe GA, Hartog N, Hendron D, Horner CC, O'B Hourihane J, Iglesia E, Kan M, Kaplan B, Katelaris CH, Kim H, Kelso JM, Kahn DA, Lang D, Ledford D, Levin M, Lieberman JA, Loh R, Mack DP, Mazer B, Mody K, Mosnaim G, Munblit D, Mustafa SS, Nanda A, Nathan R, Oppenheimer J, Otani IM, Park M, Pawankar R, Perrett KP, Peter J, Phillips EJ, Picard M, Pitlick M, Ramsey A, Rasmussen TH, Rathkopf MM, Reddy H, Robertson K, Rodriguez del Rio P, Sample S, Sheshrabi A, Shiek J, Sindher SB, Spergel JM, Stone CA, Stukus D, Tang ML, Tracy JM, Turner PJ, Vander Leek TK, Wallace DV, Wang J, Wasserman S, Weldon D, Wolfson AR, Worm M, Yacoub M-R, Updated Guidance Regarding The Risk of Allergic Reactions to COVID-19 Vaccines and Recommended Evaluation and Management: A GRADE Assessment, and International Consensus Approach, *Journal of Allergy and Clinical Immunology* (2023), doi: <https://doi.org/10.1016/j.jaci.2023.05.019>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Crown copyright © 2023 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology.

1 **Updated Guidance Regarding The Risk of Allergic Reactions to COVID-19 Vaccines and**
2 **Recommended Evaluation and Management: A GRADE Assessment, and International**
3 **Consensus Approach**

4
5
6 Matthew Greenhawt, MD, MBA, MSc¹
7 Timothy E. Dribin, MD²
8 Elissa M. Abrams, MD, MPH³
9 Marcus Shaker MD, MSc⁴
10 Derek K. Chu, MD, PhD⁵
11 David BK Golden⁶
12 Cem Akin, MD⁷
13 Akterini Anagnostou⁸
14 Faisal ALMuhizi, MD⁹
15 Waleed Alqurashi, MD¹⁰
16 Peter Arkwright, MD, PhD¹¹
17 James L. Baldwin, MD⁷
18 Aleena Banerji, MD¹²
19 Philippe Bégin, MD¹³
20 Moshe Ben-Shoshan, MD, MSc¹⁴
21 Jonathan Bernstein, MD¹⁵
22 Theresa A. Bingeman, MD¹⁶
23 Carsten Bindslev-Jensen, MD, PhD, DMSci¹⁷
24 Kim Blumenthal, MD, MPH¹²
25 Aideen Byrne FRCPCH PhD¹⁸
26 Julia Cahil, BScPhm ACPR MPH¹⁹
27 Scott Cameron, MD²⁰
28 Dianne Campbell, MD, PhD²¹
29 Ronna Campbell, MD, PhD²²
30 Michael Cavender, DO²³
31 Edmond S. Chan, MD²⁴
32 Sharon Chinthrajah, MD²⁵
33 Pasquale Comberiatti, MD²⁶
34 Jacqueline J Eastman, MD²⁷
35 Anne K. Ellis, MD, MSc, FRCPC²⁸
36 David M. Fleischer, MD¹
37 Adam Fox, MD, FRCPCH²⁹
38 Pamela A. Frischmeyer-Guerrero, MD, PhD³⁰
39 Remi Gagnon, MD, MSc³¹
40 Lene H. Garvey, MD, PhD³³
41 Mitchell H. Grayson, MD³³
42 Ghislaine Annie Clarisse Isabwe MD¹⁴
43 Nicholas Hartog, MD²⁷
44 David Hendron, DO³⁴
45 Caroline C. Horner, MD, MSCI³⁵
46 Johnathan O'B Hourihane, MD³⁶

47 Edward Iglesia, MD, MPH³⁷
48 Manstein Kan, MD , FRCPC³⁸
49 Blanca Kaplan, MD³⁹
50 Constance H Katelaris AO MB BS PhD FRACP⁴⁰
51 Harold Kim, MD⁴¹
52 John M. Kelso, MD⁴²
53 David A. Kahn, MD⁴³
54 David Lang, MD⁴⁴
55 Dennis Ledford, MD⁴⁵
56 Michael Levin, MD, PhD⁴⁶
57 Jay A. Lieberman, MD⁴⁷
58 Richard Loh, MD⁴⁸
59 Douglas P. Mack, MD, MSc⁴⁹
60 Bruce Mazer, MD¹⁴
61 Ketan Mody MD⁵⁰
62 Gissele Mosnaim, MD, MS⁵¹
63 Daniel Munblit, MD, PhD⁵²
64 S. Shahzad Mustafa, MD⁵³
65 Anil Nanda MD⁵⁴
66 Richard Nathan, DO⁵⁵
67 John Oppenheimer, MD⁵⁶
68 Iris M. Otani, MD⁵⁷
69 Miguel Park, MD⁵⁸
70 Ruby Pawankar, MD⁵⁹
71 Kirsten P Perrett, MBBS, FRACP, PhD⁶⁰
72 Jonny Peter⁶¹
73 Elizabeth J. Phillips, MD³⁷⁶²
74 Matthieu Picard, MD, FRCPC⁶³
75 Mitchell Pitlick, MD⁵⁸
76 Allison Ramsey, MD⁵³
77 Trine Holm Rasmussen, MD¹⁷
78 Melinda M. Rathkopf⁶⁴
79 Hari Reddy, MD⁶⁵
80 Kara Robertson, MD, FRCPC⁶⁶
81 Pablo Rodriguez del Rio, MD, PhD⁶⁷
82 Steven Sample MD⁶⁸
83 Ajay Sheshradi, MD, MSCI⁶⁹
84 Javed Shiek, MD⁷⁰
85 Sayantani B. Sindher, MD²⁵
86 Jonathan M. Spergel, MD, PhD⁷¹
87 Cosby A. Stone, MD³⁷
88 David Stukus, MD³³
89 Mimi LK Tang, MBBS, PhD⁷²
90 James M. Tracy, DO⁷³
91 Paul J. Turner BM, BCh, FRACP, PhD⁷⁴
92 Timothy K Vander Leek, MD⁷⁵

93 Dana V. Wallace, MD⁷⁶
 94 Julie Wang, MD⁷⁷
 95 Susan Wasserman, MSc, MD⁷⁸
 96 David Weldon⁷⁹
 97 Anna R. Wolfson, MD¹²
 98 Margitta Worm, MD⁸⁰
 99 Mona-Rita Yacoub, MD⁸¹

100
 101

102 Affiliations:

103 ¹Section of Allergy and Clinical Immunology, Children's Hospital Colorado, University of
 104 Colorado School of Medicine, Aurora, CO, US

105 ² Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati,
 106 OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH

107 ³Department of Pediatrics and Child Health, Section of Allergy and Immunology, The University
 108 of Manitoba, Winnipeg, MB, Canada

109 ⁴Dartmouth-Hitchcock Medical Center, Section of Allergy and Immunology, Lebanon, NH; and
 110 Dartmouth Geisel School of Medicine, Hanover, NH, US

111 ⁵Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of
 112 Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Ontario,
 113 Canada; and The Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada; Evidence
 114 in Allergy Group

115 ⁶Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine,
 116 Baltimore, MD, US

117 ⁷ Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of
 118 Michigan School, Ann Arbor, MI, US

119 ⁸Section of Immunology, Allergy, and Retrovirology, Department of Pediatrics, Baylor College of
 120 Medicine, Houston, Texas; Section of Immunology, Allergy and Retrovirology, Department of
 121 Pediatrics, Texas Children's Hospital, Houston, Texas

122 ⁹ Division of Allergy and Clinical Immunology, Department of Internal Medicine, Security
 123 Forces Hospital Program, Riyadh, Saudi Arabia

124 ¹⁰ Department of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, Ontario,
 125 Canada.

126 ¹¹ Lydia Becker Institute of Immunology and Inflammation, University of Manchester,
 127 Manchester, United Kingdom

128 ¹²Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts
 129 General Hospital, Harvard Medical School, Boston, MA

130 ¹³Centre Hospital Universitaire Sainte-Justine, Montreal, Quebec, Canada

131 ¹⁴ Division of Allergy, Immunology, and Dermatology, Department of Pediatrics, McGill
 132 University Health Center-Montreal Children's Hospital, Montreal, Quebec, Canada

133 ¹⁵ Division of Immunology, Department of Internal Medicine, University of Cincinnati,
 134 Cincinnati, OH, US

135 ¹⁶ Division of Allergy, Immunology and Rheumatology, University of Rochester School of
 136 Medicine and Density, Rochester, NY, US

137 ¹⁷ Department of Dermatology and Allergy Center, Odense Research Centre for Anaphylaxis
 138 (ORCA), Odense, Denmark

139 ¹⁸ Department of Paediatrics, School of Medicine, Trinity College Dublin, Ireland
 140 ¹⁹ University of Alberta, Faculty of Medicine, Calgary, Alberta, Canada
 141 ²⁰ Allergy Victoria, Victoria, British Columbia, Canada
 142 ²¹ The Children's Hospital at Westmead, Sydney, New South Wales, Australia
 143 ²² Department of Emergency Medicine, Mayo Clinic, Rochester, Minnesota, US
 144 ²³ Carilion Clinic, Verona, VA, US
 145 ²⁴ BC Children's Hospital, Division of Allergy & Immunology, The University of British
 146 Columbia, Vancouver, BC, Canada
 147 ²⁵ Department of Medicine, Division of Pulmonary, Allergy and Critical Care; Department of
 148 Pediatrics, Division of Allergy, Immunology and Rheumatology; Sean N. Parker Center for
 149 Allergy and Asthma Research; Stanford University School of Medicine, Palo Alto, CA, US
 150 ²⁶ Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa,
 151 Pisa, Italy
 152 ²⁷ Corewell Health Allergy and Immunology, Grand Rapids, MI; Michigan State University
 153 College of Human Medicine, Grand Rapids, MI, US
 154 ²⁸ Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston,
 155 Ontario, Canada
 156 ²⁹ Guys's and St. Tomas' Hospital NHS Foundation Trust, London, United Kingdom
 157 ³⁰ Laboratory of Allergic Diseases, Food Allergy Research Section, National Institutes of Allergy
 158 and Infectious Diseases, the National Institutes of Health, Bethesda, MD, US
 159 ³¹ Clinique Spécialisée en Allergie de la Capitale, Québec, Québec, Canada.
 160 ³² Allergy Clinic, Department of Dermatology and Allergy, Herlev and Gentofte Hospital and
 161 Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
 162 ³³ Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's
 163 Hospital, The Ohio State University College of Medicine, Columbus, OH, US
 164 ³⁴ Access Health Care Physicians LLC, New Port Richey, FL, US
 165 ³⁵ Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington
 166 University School of Medicine, St. Louis, MO, US
 167 ³⁶ Department of Paediatrics, Royal College of Surgeons, Dublin, Ireland
 168 ³⁷ Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine,
 169 Vanderbilt University School of Medicine, Nashville, TN, US
 170 ³⁸ Fraser Allergy, Langley, British Columbia, Canada
 171 ³⁹ Division of Allergy and Immunology, Northwell Health, New York, US
 172 ⁴⁰ Campbelltown Hospital, Western Sydney University, Sydney, New South Wales, Australia
 173 ⁴¹ Western University, London, ON, Canada, McMaster University, Hamilton, ON, Canada
 174 ⁴² Division of Allergy, Asthma, and Immunology, Scripps Clinic, San Diego, CA, US
 175 ⁴³ Division of Allergy & Immunology, Department of Medicine, University of Texas
 176 Southwestern Medical Center, Dallas, TX, US
 177 ⁴⁴ Department of Allergy and Clinical Immunology, Respiratory Institute, Cleveland Clinic,
 178 Cleveland, OH, US
 179 ⁴⁵ Division of Allergy and Immunology, Department of Medicine, University of South Florida
 180 Morsani College of Medicine, Tampa, FL, US
 181 ⁴⁶ Division of Paediatric Allergology, Faculty of Health Sciences, University of Cape Town,
 182 Cape Town, South Africa
 183 ⁴⁷ Division of Allergy and Immunology, The University of Tennessee, Memphis, TN, US
 184 ⁴⁸ Immunology Department, Perth Children's Hospital, Perth, Western Australia, Australia

185 ⁴⁹McMaster University, Hamilton, ON, Canada and Halton Pediatric Allergy, Burlington, ON,
 186 Canada

187 ⁵⁰ Elite Sports Medicine Institute Ltd. Westmont, IL, US

188 ⁵¹ Division of Pulmonary, Allergy and Critical Care, Department of Medicine, NorthShore
 189 University Health System, Evanston, IL, US

190 ⁵² Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of
 191 Medicine, Imperial College London, London, United Kingdom

192 ⁵³Rochester Regional Health, University of Rochester School of Medicine and Dentistry,
 193 Rochester, NY, US

194 ⁵⁴ Asthma and Allergy Center, Lewisville and Flower Mound, Texas; and Division of Allergy
 195 and Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, US

196 ⁵⁵ Idaho Falls Infectious Diseases, Idaho Falls, ID, US

197 ⁵⁶ UMDMJ Rutgers University School of Medicine, New Brunswick, NJ, US

198 ⁵⁷University of California San Francisco Division of Pulmonary, Critical Care, Allergy, and
 199 Sleep Medicine, San Francisco, CA, US

200 ⁵⁸ Division of Allergic Diseases, Mayo Clinic, Rochester, MN

201 ⁵⁹ Department of Pediatrics, Nippon Medical School, Tokyo, Japan

202 ⁶⁰ Murdoch Children's Research Institute, and Department of Paediatrics, University of
 203 Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia

204 ⁶¹Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital,
 205 University of Cape Town Lung Institute, Mowbray, South Africa

206 ⁶² Center for Drug Safety and Immunology, Department of Medicine, Vanderbilt University Medical
 207 Center.

208 ⁶³ Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada

209 ⁶⁴Allergy and Asthma Associates of Allen, Allen, TX, US

210 ⁶⁵ Allergy, Asthma and Immunology Center of Alaska, Anchorage, AK, US; Department of
 211 Pediatrics, University of Washington School of Medicine, Seattle, WA, US

212 Anchorage, AK, US

213 ⁶⁶ Division of Clinical Immunology and Allergy, St. Joseph's Health Care, London Ontario
 214 Canada and the Schulich School of Medicine and Dentistry, Western University, London,
 215 Ontario, Canada

216 ⁶⁷ Allergy Department, University Hospital Niño Jesus, Madrid, Spain

217 ⁶⁸Memorial Hospital and Health Care Center, Jasper, IN, US

218 ⁶⁹ Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas
 219 MD Anderson Cancer Center

220 ⁷⁰ Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, US

221 ⁷¹ Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of
 222 Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, US

223 ⁷² Murdoch Children's Research Institute, University of Melbourne, Royal Children's Hospital,
 224 Parkville, Victoria, Australia; Department of Allergy and Immunology, Royal Children's
 225 Hospital, Parkville, Victoria, Australia.

226 ⁷³ Allergy, Asthma, & Immunology Associates, P.C., Omaha, NE, US; Associate Professor of
 227 Pediatrics, University of Nebraska School of Medicine, Omaha, NE, US

228 ⁷⁴ Imperial College Healthcare NHS Trust & Royal Brompton & Harefield NHS Foundation
 229 Trust, London, United Kingdom

230 ⁷⁵ Pediatric Allergy and Asthma, Department of Pediatrics, University of Alberta, Edmonton,
 231 Alberta, Canada

232 ⁷⁶ Nova Southeastern University College of Allopathic Medicine, Fort Lauderdale, FL, US
 233 ⁷⁷ Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of
 234 Medicine at Mount Sinai and the Jaffe Food Allergy Institute, New York, NY, US
 235 ⁷⁸ Department of Medicine, Clinical Immunology and Allergy, McMaster University, Hamilton,
 236 Ontario, Canada
 237 ⁷⁹ Baylor Scott and White Clinic, College Station, TX, US
 238 ⁸¹ Division of Allergology and Immunology, Department of Dermatology, Venereology and
 239 Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
 240 Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin, Germany
 241 ⁸¹ Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Hospital, Unit of Immunology,
 242 Rheumatology, Allergy and Rare Diseases, Segrate, Milan, Italy

243
 244
 245 Corresponding Author:
 246 Matthew Greenhawt, MD, MBA, MSc
 247 Section of Allergy and Immunology
 248 Children's Hospital Colorado
 249 University of Colorado School of Medicine
 250 13123 E. 16th Ave
 251 Aurora, CO 80045
 252 Matthew.Greenhawt@childrenscolorado.org
 253
 254 Key words: SARS-CoV-2; COVID-19; vaccination; adenovirus vector vaccine; mRNA COVID-
 255 19 vaccine; anaphylaxis; allergic reactions; repeat allergic reactions; polyethylene glycol;
 256 polysorbate 80; skin testing; shared decision-making, GRADE; allergy; allergy specialist
 257

258 Abbreviations: Coronavirus disease 2019(COVID-19), Vaccine Adverse Event Reaction System
 259 (VAERS), vaccine safety datalink (VSD) skin testing (ST), Grading of Recommendations
 260 Assessment, Development and Evaluation (GRADE), Research Electronic Data Capture
 261 (REDCap), National Institutes of Allergy and Infectious Diseases (NIAID), polyethylene glycol
 262 (PEG), polysorbate 80 (PS), Complement Activation-Related Pseudoallergy (CARPA),
 263 Immunization Stress-Related Response(ISRR), Canadian Society of Allergy and Clinical
 264 Immunology (CSACI), Credibility Interval (CrI), Confidence Interval (CI)
 265

266 Funding: none
 267 Trial Registration: not applicable
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277

278 Conflicts of Interest
 279 Matthew Greenhawt: has received past research support to his institution from DBV
 280 Technologies, and the Agency for Healthcare Research and Quality; receives current research
 281 support from Novartis and Silota; is a consultant for Aquestive; is a member of
 282 physician/medical advisory boards for DBV Technologies, Nutricia, Novartis, Aquestive,
 283 Allergy Therapeutics, AstraZeneca, ALK-Abello, and Prota; is an unpaid member of the
 284 scientific advisory council for the National Peanut Board and medical advisory board of the
 285 International Food Protein Induced Enterocolitis Syndrome Association; is a member of the
 286 Brighton Collaboration Criteria Vaccine Anaphylaxis 2.0 working group; is the senior associate
 287 editor for the Annals of Allergy, Asthma, and Immunology, and is member of the Joint
 288 Taskforce on Allergy Practice Parameters. He has received honorarium for lectures from ImSci,
 289 RMEI Medical Education, MedLearningGroup, and multiple state/local allergy societies.
 290 Timothy Dribin: has received support from the National Institutes of Health, under Award
 291 Number 25 2KL2TR001426-05A1 and the National Center for Advancing Translational
 292 Sciences of the National Institutes 26 of Health, under Award Number 2UL1TR001425 - 05A1.
 293 The content is solely the responsibility of the 27 authors and does not necessarily represent the
 294 official views of the NIH
 295 Elissa Abrams: is a collaborator with the Institute for Health Metrics and Evaluation. She is na
 296 employee of Public Health Agency of Canada (PHAC) but the views expressed are her own and
 297 not that of PHAC.
 298 Marcus Shaker: serves on the editorial board of The Journal of Allergy and Clinical Immunology
 299 *In Practice*, is an associate editor of Annals of Allergy, Asthma, and Immunology, is a member
 300 of the Joint Task Force on Practice Parameters, and has participated in research that has received
 301 funding from DBV.
 302 David Golden: Speakers bureau honoraria from Genentech, Kaleo; Clinical trial support from
 303 Genentech, Thermo Fisher, Novartis, Pfizer, GSK, and Regeneron, all unrelated to
 304 vaccine/vaccine development or COVID-19 treatment; Consulting fees from Aquestive,
 305 Novartis, ALK; Royalties from UpToDate (section editor).
 306 Cem Akin: consulting fees from Blueprint Medicine, Cogent, and Novartis; research support
 307 from Blueprint Medicines and Cogent; and royalties from UpToDate. Ronna L. Campbell:
 308 consulting fees from Bryn and royalties from UpToDate.
 309 Aikaterini Anagnostou reports institutional funding from Aimmune Therapeutics and FARE (Food
 310 Allergy Research and Education), personal fees from DBV Technologies, ALK, and FARE.
 311 Moshe Ben-Shoshan: Consultant for Novartis
 312 Jonathan A. Bernstein: principal investigator, consultant, and speaker for Novartis, Genentech,
 313 AZ, Sanofi Regeneron, Takeda/Shire, CSL Behring, Pharming, Biocryst, and Merck; consultant
 314 for Kalvista, Ionis, Celldex, Allakos, Amgen, Biomarin, and Blueprint Medicine; principal
 315 investigator and speaker for GSK; speaker for Optinose; consultant for Ono, Astria, Incyte,
 316 Cycle, and Escient; and royalties from UpToDate, BMJ, Taylor Francis, and Elsevier.
 317 Theresa Bingeman: Consultant- ALK, Speaker-Sanofi, PI- Novartis, Aimmune- advisory board;
 318 Kimberly Blumenthal: receives grant support from the NIH/NIAID (R01AI150295,
 319 2UM1AI109565-08), Phadia Ab (Thermo Fisher Scientific), and the Massachusetts General
 320 Hospital; personal fees for legal case review from Weekley Shulte Valdes Murman Tonelli,
 321 Piedmont Liability Trust, Varios Kelly and Strollo PA, and Publix Supermarkets; and royalties
 322 from UpToDate, outside the submitted work.

323 Dianne Campbell: DBV employee (0.8FTE). Honorarium for Advisory Boards; AllerGenis,
 324 Westmead Fertility Centre. Research Grants to Institution from Department of Health, Australia
 325 & National Health and Medical Council of Australia

326 Ronna Campbell: is an author for UpToDate (Waltham, MA, USA) and a consultant for Bryn
 327 Pharma (Raleigh, NC, USA)

328 Edmond Chan: has received research support from DBV Technologies; has been a member of
 329 advisory boards for Pfizer, Miravo, Medexus, Leo Pharma, Kaleo, DBV, AllerGenis, Sanofi
 330 Genzyme, Bausch Health, Avir Pharma, AstraZeneca, ALK; and is on the Executive of the
 331 CSACI (Canadian Society of Allergy and Clinical Immunology)

332 Sharon Chinthrajah: receives grant support from the Consortium for Food Allergy Research
 333 (CoFAR), National Institute of Allergy and Infectious Disease (NIAID), Food Allergy Research
 334 & Education (FARE), Aimmune, DBV Technologies, Astellas, Novartis, Regeneron, and Astra
 335 Zeneca, and is an advisory board member for Alladapt Immunotherapeutics, Novartis, Sanofi,
 336 Allergen, Intrommune Therapeutics, and Genentech. There are no conflicts of interest in this
 337 publication

338 Anne Ellis: advisory boards for ALK-Abello, AstraZeneca, Aralez, Bausch Health, LEO Pharma,
 339 Merck, Novartis, and Pfizer; speakers' bureaus for ALK-Abello, AstraZeneca, Miravo,
 340 Medexus, and Mylan; research support (paid to institution) from ALK-Abello, Aralez,
 341 AstraZeneca, Bayer LLC, Medexus, Novartis, and Regeneron; independent consultant to Bayer
 342 LLC and Regeneron; and royalties from UpToDate.

343 David Fleischer: has received research support to his institution from Aimmune Therapeutics and
 344 DBV Technologies; is a member of the medical advisory board for the Food Allergy &
 345 Anaphylaxis Connection Team (FAACT), medical advisory council for the National Peanut
 346 Board, the Adverse Reactions to Food Committee (former chair 2017-2019) for the AAAAI, and
 347 Food Allergy Committee for the ACAAI; has received royalties from UpToDate; and is a
 348 consultant to Allergen, Aqueous Therapeutics, Aravax, Danone, DBV Technologies,
 349 Genentech, Nasus Pharma, and Nurture Inc. (Happy Family Organics).

350 Remi Gagnon: Clinical trials sponsored by : Regeneron, Novartis, Sanofi, AstraZeneca, GSK,
 351 ALK

352 Mitchell Grayson: is THE Editor-in-Chief of the Annals of Allergy, Asthma & Immunology, has
 353 served on advisory boards for AbbVie, GSK, and Merck, has stock options in Invirsa, Inc.,
 354 serves of the Board of Directors of the Asthma and Allergy Foundation of America (AAFA),
 355 where he is Chair of their Medical Scientific Council, and is a member of the American Lung
 356 Association Scientific Advisory Committee

357 Nicholas Hartog: Horizon (speaker and ad board), Pharming (speaker, ad board, scientific
 358 steering committee), Chiesi (consultant), Takeda (ad board and speaker).

359 Johnathan Hourihane: Research funding: DBV Technologies; Aimmune Therapeutics, Johnson
 360 and Johnson, Temple St Foundation and Dublin Skin and Cancer Hospital Charity, Clemens von
 361 Pirquet Foundation.Consultancy: Aimmune Therapeutics, Johnson and Johnson

362 Harold Kim: Speakers' bureau and/or advisory boards: ALK, AstraZeneca, Bausch Health, CSL
 363 Behring, GSK, Miravo, Novartis, Pediapharm, Pfizer, Sanofi, Shire, Takeda.

364 David Lang: honoraria, consultant, and/or clinical research support from AstraZeneca,
 365 Genentech, Novartis, and Sanofi-Regeneron; Guest Associate Editor of *JACI:In Practice*; and
 366 editorial board of DynaMed.

367 Denis Ledford: contributor to UpToDate for Perioperative Anaphylaxis; Contributing Editor for
 368 Ask the Expert (AAAI); research support from AstraZeneca and Novartis (paid to institution);

369 consultant for AstraZeneca; speaker bureau/honoraria from AstraZeneca, Genentech, GSK, and
 370 Sanofi/Regeneron; and legal opinion indoor fungal exposure, drug allergy, anaphylaxis.
 371 Jay Lieberman: Research/Money to Institution: Aimmune, DBV, Regeneron Novartis.
 372 Consultant/Advisor: Aquestive, ALK, DBV, Novartis. Adjudication/DSMB: Abbvie, Siolta
 373 Douglas Mack: has provided consultation and speaker services for Aimmune, Bausch Health,
 374 ALK-Abello, Medexus, Miravo and is an investigator for DBV and ALK-Abello and serves on
 375 the editorial board of the Journal of Food Allergy
 376 Bruce Mazer: receives funding from the Canadian Institutes for Health Research, The National
 377 Science and Engineering Council for Canada and Candian Allergy Asthma and Immunology
 378 Foundation, and the McGill Univeristy Foundation
 379 Giselle Mosnaim: received past research grant support from Teva, Astra-Zeneca, Alk-Abello,
 380 and Genentech and current research grant support from Sanofi-Regeneron, Novartis, and
 381 GlaxoSmithKline.
 382 Shahzad Mustafa: Speakers bureau: Genentech, Regeneron/Sanofi, GSK, AstraZeneca, CSL
 383 Behring, Aimmune
 384 John Oppenheimer: is a consultant for Amgen, Aimmune, Aquestive, GSK, Sanofi; member of
 385 the Adjudication or Data Safety Monitoring Board for Astra Zeneca, Amgen, Abbvie, Novartis,
 386 Glaxo Smith Kline; is the Executive Editor for the Annals of Allergy Asthma and Immunology;
 387 and a reviewer for UpToDate.
 388 Kirsten Perrett: has received research grants from DBV Technologies, GSK, Novartis and Siolta
 389 Therapeutics and consultant fees from Aravax outside the submitted work, paid to her institution.
 390 Matthieu Picard: Received lecture fees from Novartis
 391 Allison Ramsey: Speaker's Bureau GSK and Sanofi/Regeneron
 392 Pablo Rodriguez del Rio: Research grant: Aimmune Therapeutics, FAES. Speaker for: GSK,
 393 FAES, Novartis, ALK-Abelló, LETI and Aimmune Therapeutics, Sanofi, Stallergenes.
 394 Advisory: FAES, Miravo
 395 Ajay Sheshrabi: Consultant, Enanta Pharmaceuticals
 396 Sayatani Sindher: reports grants from NIH, Regeneron, DBV Technologies, Aimmune, Novartis,
 397 CoFAR, and FARE. She is an Advisory member at Genentech and DBV Technologies. There are
 398 no conflicts of interest in this publication.
 399 Cosby Stone: receives research support from the AAAAI Foundation Faculty Development
 400 Award
 401 David Stukus: Consultant – ARS Pharmaceuticals, Before Brands, Novartis, Parent MD;
 402 Research support – DBV Technologies; Honoraria – American Academy of Pediatrics, American
 403 College of Allergy, Asthma and Immunology; Member – Joint Task Force on Practice
 404 Parameters for Allergy/Immunology; Board of Regents for the American College of Allergy,
 405 Asthma and Immunology
 406 Mimi Tang: declares consultant fees from Pfizer and Abbott Nutrition; was the past employee
 407 (ended July 2022) of and share interest/options in Prota Therapeutics; is the member of the
 408 Medical Advisory Board of Anaphylaxis & Anaphylaxis Australia; is the member of the Board
 409 of Directors of Asia Pacific Association of Allergy Asthma and Clinical Immunology and was
 410 the past member of the Board of Directors of the WAO (ended 2019); is the member of expert
 411 committees of the American Academy of Allergy, Asthma & Immunology, Asia Pacific
 412 Association of Allergy Asthma and Clinical Immunology, Australasian Society of Clinical
 413 Immunology and Allergy, and the World Health Organization.

414 Paul Turner: has received grants from Medical Research Council andcNIHR/Imperial
415 Biomedical Research Centre; personal fees and non-financial support from Allergenis, plus
416 grants from UK Medical Research Council, grants and personal fees from UK Food Standards
417 Agency, personal fees and non-financial support from Aimmune Therapeutics, grants from Jon
418 Moulton Charity Trust, personal fees from Aquestive all outside the submitted work.
419 Timothy Vander Leek: has served on advisory boards for and received honoraria from
420 Aralez/Miravo, Bausch Health, Covis Pharma, and Pfizer
421 Julie Wang: receives research support from National Institute of Allergy and Infectious Diseases,
422 Aimmune, DBV Technologies, and Regeneron, and consultancy fees from ALK Abello and
423 Jubilant HollisterStier.
424 Susan Wasserman: consulting fees from GSK, Novartis, CSL Behring, Pfizer Canada, Sanofi
425 Canada, AZ, Takeda, ALK Abello, Teva, Medexus, MiravoHealth, Mylan, Bausch Lomb,
426 AbbVie, Avir Pharma, and Leo Pharma; research funding from Pfizer Canada, ALK-Abello,
427 Aimmune; and president of Canadian Allergy, Asthma and Immunology Foundation.
428 Margitta Worm:
429
430 No conflicts to declare related to this work: Faisal ALMuhizi, Waleed Alquarshi, Peter
431 Arkwright, James Baldwin, Aleena Banerji, Carsten Bindslev-Jensen, Aideen Byrne, Julia Cahil,
432 Scott Cameron, Michael Cavander, Derek Chu, Pasquale Comberiatti, Jacqueline Eastman, Adam
433 Fox, Pamela Frischmeyer-Gurrerio, Lene Garvey, David Hendron, Catherine Horner, Ghislaine
434 Isabwe, Manstein Kan, Blanca Kaplan, Constance Katelaris, John Kelso, David Khan, Michael
435 Levin, Richard Loh, Ketan Mody, Daniel Munblit, Richard Nathan, Anil Nanda, Miguel Park,
436 Ruby Pawankar, Mitchell Pitlick, Elizabeth Phillips, Hari Reddy, Trine Rassumssen, Kara
437 Robertson, Javed Shiek, Jonathan Spergel, James Tracey, Dana Wallace, David Weldon, Anna
438 Wolfson, Mona-Rita Yacoub
439
440

441 **Abstract**

442 This guidance updates 2021 GRADE recommendations regarding immediate allergic reactions
443 following COVID-19 vaccines and addresses re-vaccinating individuals with 1st dose allergic
444 reactions and allergy testing to determine re-vaccination outcomes. Recent meta-analyses
445 assessed the incidence of severe allergic reactions to initial COVID-19 vaccination, risk of
446 mRNA-COVID-19 re-vaccination after an initial reaction, and diagnostic accuracy of COVID-19
447 vaccine and vaccine excipient testing in predicting reactions. GRADE methods informed rating
448 the certainty of evidence and strength of recommendations. A modified Delphi panel consisting of
449 experts in allergy, anaphylaxis, vaccinology, infectious diseases, emergency medicine, and
450 primary care from Australia, Canada, Europe, Japan, South Africa, the UK, and the US formed
451 the recommendations. We recommend vaccination for persons without COVID-19 vaccine
452 excipient allergy, and re-vaccination after a prior immediate allergic reaction. We suggest
453 against >15-minute post-vaccination observation. We recommend against mRNA vaccine or
454 excipient skin testing to predict outcomes. We suggest re-vaccination of persons with an
455 immediate allergic reaction to the mRNA vaccine or excipients be performed by a person with
456 vaccine allergy expertise, in a properly equipped setting. We suggest against pre-medication,
457 split-dosing, or special precautions because of a comorbid allergic history.

458
459

460

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

485 **Introduction:**
 486 Through March 2023, the novel SARS-CoV-2 coronavirus and subsequent COVID-19
 487 (Coronavirus disease 2019) global pandemic has caused over 676 million infections and 6.8
 488 million fatalities.¹ Multiple efficacious COVID-19 vaccines have been available since December
 489 2020.² The rare occurrence of severe immediate allergic reactions to these vaccines raised initial
 490 concern about the potentially allergenic role of vaccine excipients, polyethylene glycol (PEG) in
 491 the mRNA vaccines and polysorbate 80 (PS) in the viral vector vaccines, and the need for allergy
 492 screening for possible risk factors for allergic reactions.³⁻⁶ In mid-2021, a systematic review and
 493 meta-analysis facilitated preliminary GRADE-based guidelines addressing immediate, presumed
 494 allergic, reactions following the mRNA COVID-19 vaccines (BNT162b2 or mRNA-1273),
 495 noting a rare incidence of immediate severe (e.g. anaphylaxis) 1st dose reactions (e.g., occurring
 496 within 4 hours of administration as per the 2007 Brighton Collaboration Criteria [BCC]
 497 definition)⁷, a low baseline PEG allergy prevalence, and poor test sensitivity for PEG as a skin
 498 testing reagent in assessing suspected non-COVID-19 vaccine and medication allergy.⁵ There
 499 were scant data available to analyze the risk of severe 2nd dose allergic reactions in individuals
 500 with 1st dose reactions, or to assess the predictive accuracy of vaccine or vaccine excipient skin
 501 testing for vaccine allergic reactions.
 502

503 Though immediate, severe COVID-19 vaccine allergic reactions occur rarely, many health
 504 authorities around the world contraindicate vaccinating persons with a history of allergy to the
 505 vaccine or its excipient.⁵ However, this may not be necessary in the majority of instances.
 506 Additional data have emerged since the 2021 publication, providing evidence to evolve
 507 recommendations made earlier in the pandemic. This updated guidance specifically focuses on
 508 the approach to assessing a patient with a history of mRNA COVID-19 excipient allergy or an
 509 immediate presumed allergic reaction to a dose of a mRNA COVID-19 vaccine, in determining
 510 if an initial or additional doses should be given, and how to assess such patients.
 511

512 **Methods:**
 513 Following previously published methodology,⁵ we convened an ad hoc international panel of 94
 514 clinical experts in allergy, anaphylaxis, vaccinology, infectious diseases, emergency medicine,
 515 and primary care from Australia, Canada, Europe, Japan, South Africa, the UK, and the US to
 516 evaluate the current evidence regarding mRNA COVID-19 vaccination or revaccination in the
 517 context of suspected immediate vaccine or excipient allergy, and the utility of approaches such
 518 as vaccine or excipient skin testing in evaluating persons with an immediate, presumed allergic
 519 reaction to a mRNA COVID-19 vaccine or excipient from a societal perspective. The choice of
 520 questions and topics addressed in this document were intended to update the 2021 review
 521 (including the limitations, table of knowledge gaps and feedback received on this document),
 522 which was planned as a living systematic review. Final selection of topics addressed was at the
 523 purview of the senior authors (MG, MS, EA, DG, DC). Data sources included published
 524 systematic reviews and meta-analyses (through the fall of 2022) assessing the risk of initial and
 525 recurrent dose reactions, and the accuracy of vaccine and vaccine excipient allergy skin testing
 526 (prick and intradermal testing combined) in predicting these risks.^{5,8,9} A primary draft was
 527 developed by the senior authors using the Grading of Recommendations Assessment,
 528 Development and Evaluation (GRADE) format for evidence synthesis from an individual
 529 perspective with secondary consideration for the healthcare perspective (Table E1).¹⁰⁻¹³ This
 530 draft was revised iteratively by the workgroup, and a modified Delphi panel was used to rate

531 agreement and consensus with the text and recommendations (1=strongly disagree, 2= disagree,
 532 3=neutral, 4=agree, 5=strongly agree, 80% threshold for agreement), as previously described.^{5,14}
 533

534 The guidance statements and recommendations are presented in Table 1. The GRADE strength
 535 of recommendations and certainty of evidence are summarized in Tables 2 and 3, and the risk of
 536 bias assessment in Table E2 (the risk of bias for any meta-analysis was included as it was
 537 originally published). The Evidence to Decision Framework supplement provides a summary
 538 reflection of the evidence in the context of the clinical recommendation. The modified Delphi
 539 panel results for each recommendation are shown in the Table E3. All questions presume a
 540 patient is seeking either initial mRNA-COVID-19 vaccination, re-vaccination after an immediate
 541 presumed allergic reaction to a prior dose, or is allergic to a vaccine excipient, in the setting of
 542 shared decision-making with a medical professional willing to provide supervised vaccination.
 543 A full description of the methods is detailed in the supplemental material.

544

545 **Results:**

546 **Question 1: What is the risk of COVID-19 vaccine anaphylaxis in a patient with no history
 547 of anaphylaxis to a COVID-19 vaccine or its excipients?**

548

549 **Recommendation 1a: For patients with no history of a previous allergic reaction to a
 550 COVID-19 vaccine or its excipients, the risk of first-dose COVID-19 vaccine-induced
 551 anaphylaxis is exceptionally low, and we recommend vaccination over either no vaccination
 552 or vaccine deferral.**

553 **Strong Recommendation; High Certainty of Evidence**

554

555 **Recommendation 1b: For patients with a history of a severe allergic reaction, including
 556 anaphylaxis, unrelated to a mRNA COVID-19 vaccine or vaccine excipient, we suggest
 557 against additional post-vaccination observation beyond standard wait time (e.g., 15
 558 minutes).**

559 **Conditional Recommendation; Low Certainty of Evidence**

560

561 **Question 2: In a patient without a history of anaphylaxis to a mRNA COVID-19 vaccine or
 562 its excipients, should allergy skin testing to mRNA COVID-19 vaccines or its excipients be
 563 performed prior to initial mRNA COVID-19 vaccination?**

564

565 **Recommendation 2: For patients without a history of an immediate allergic reaction to a
 566 mRNA COVID-19 vaccine its excipients, we recommend against vaccine or vaccine
 567 excipient testing to predict the rare individual who will have a severe allergic reaction to a
 568 vaccine dose.**

569 **Strong Recommendation; Low Certainty of Evidence**

570

571 **Evidence Summary:** A 2021 systematic review and meta-analysis for all estimates of first dose
 572 severe allergic reactions following COVID-19 vaccines through March 19, 2021 found an
 573 incidence rate of 7.91 (95%CI 4.02-15.59) cases of adjudicated COVID-19 vaccine anaphylaxis
 574 per million (using the BCC), with no anaphylaxis-related fatalities, among 26 reports involving
 575 reported cases adjudicated to meet (original) BCC for anaphylaxis with a sample size of at least
 576 20,000 doses.⁵ (Figure 1) A meta-regression comparing adjudicated vs. non-adjudicated cases

577 found higher odds of reported anaphylaxis in non-adjudicated reports (OR 5.53, 95%CI 4.01-
 578 7.61) and lower rates of anaphylaxis associated with vaccines using adenoviral-vector vaccines
 579 (OR 0.47, 95%CI 0.33-0.68) and inactivated virus (OR 0.31, 95%CI 0.18-0.53) vs. mRNA
 580 vaccines, among 46 reports.⁵ Table 2 details the certainty of evidence for this estimate, and
 581 Table E2 the risk of bias assessment.

582
 583 PEG exists in mRNA COVID-19 vaccines in the form of PEG-2000, a lipid conjugate that
 584 stabilizes the lipid nanolayer, and has been suspected (though not definitively proven) as a
 585 potential allergen for immediate allergic reactions.^{3,4} In the 2021 systematic review, the
 586 calculated incidence of PEG allergy was 0.15 cases per million person-years in the US and
 587 Canada.^{5,15,16} This 2021 systematic review also calculated the pooled sensitivity and specificity
 588 for using prick or intradermal PEG skin testing in persons with non-COVID vaccine suspected
 589 PEG allergy, which were 0.59 (95%CI 0.44-0.72) and 0.99 (95%CI 0.98-0.99), respectively. Not
 590 all patients included in this pooled estimate underwent confirmatory PEG challenge, which
 591 further limits the precision of such testing.⁵ While strong GRADE recommendations with low
 592 certainty of evidence are uncommon, the rating down due to risk of bias from studies lacking
 593 challenge verification and indirectness of evaluating pre-pandemic PEG-containing medications
 594 and other vaccines. Table 3 details the certainty of evidence for this estimate and Table E2 the
 595 risk of bias assessment.

596
 597 A personal history of allergic disease (e.g., asthma, food allergy, drug allergy, non-COVID
 598 vaccine or vaccine-excipient allergy) poses no increased risk of a severe, immediate allergic
 599 reaction to an initial mRNA COVID-19 vaccine dose.^{5,17-22} These patients require no special
 600 precautions or investigations to receive their dose, and can be vaccinated in a routine setting.

601
602 Discussion: Global adjudicated rates of mRNA COVID-19 vaccine anaphylaxis are slightly
 603 higher than other historical vaccine-associated anaphylaxis (1.3-17 events per million doses)
 604 rates, but are overall rare.²³⁻²⁶ To date, no adjudicated, confirmed fatalities related to mRNA-
 605 COVID-19 vaccine anaphylaxis have been published in the medical literature, though there have
 606 been non-adjudicated passive reports.²⁷ With COVID-19 vaccination, the 2007 BCC vaccine
 607 anaphylaxis definition has led to higher estimates of anaphylaxis than when using the WAO or
 608 the NIAID anaphylaxis criteria,^{28,29} which led to the BCC being updated in 2022.^{30,31} To date,
 609 mRNA COVID-19 vaccine reactions have not been proven to be mediated by anti-PEG
 610 IgE.^{17,32,33} Given a very low baseline population prevalence of PEG allergy, the very rare rate of
 611 first dose mRNA COVID-19 severe allergic reactions, poor sensitivity of PEG skin testing, and
 612 lack of evidence supporting mRNA-COVID-19 vaccine reactions as IgE mediated, no evidence
 613 supports a population screening approach to detect pre-existing specific-IgE against PEG (or PS)
 614 as a means to predict the risk of a severe allergic reaction to an initial dose of a mRNA COVID-
 615 19 vaccine.⁵

616
 617 Threshold agreement was achieved for the voting on these 3 recommendations in the 1st round
 618 of voting (Table E3).

619
 620 **Question 3: Can additional supervised doses of mRNA COVID-19 vaccines be**
 621 **administered to a patient who had an immediate allergic reaction of any severity following**
 622 **their 1st vaccine dose?**

623
624
625
626
627
628
629

Recommendation 3: We recommend that individuals who had an immediate allergic reaction of any severity to their 1st mRNA COVID-19 vaccine dose can receive additional doses, and those with a history of an immediate allergic reaction of any severity to its excipients can receive either their initial or additional mRNA COVID-19 vaccine doses.

Strong Recommendation; Moderate Certainty of Evidence

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

Evidence Summary: A systematic review and meta-analysis using a pooled random-effects model showed that from among 22 reports of 1366 individuals with an immediate allergic reaction of any severity to a first mRNA COVID-19 vaccine, the absolute risk of a 2nd dose severe reaction to the same mRNA COVID-19 vaccine is 0.16% (95%CI 0.01%-2.94%, 6 reactions in 1366 patients, moderate certainty evidence), and the risk of any non-severe immediate allergic symptoms is 13.65% (95%CI 7.76%-22.9%, 232 reactions in 1337 patients, moderate certainty evidence).^{32,34-54} In individuals with a severe immediate allergic reaction to a first mRNA COVID-19 vaccine, the risk of any non-severe immediate allergic symptoms is 9.54% (95%CI, 2.18%-33.34%, 15 reactions in 78 patients, low certainty evidence), and the absolute risk of a repeat severe reaction with a 2nd dose of the same vaccine is 4.94% (95%CI, 0.93%-22.28%, 4 reactions in 78 patients, low certainty evidence). (Figure 2a-c) There were no fatalities related to immediate allergic reactions from mRNA COVID-19 re-vaccination.⁹ Several case series have demonstrated that children allergic to PEGylated medication (specifically PEG-asparagase) tolerate their initial dose of mRNA COVID-19 vaccination.⁵⁵⁻⁵⁸ More robust experience in administering the initial mRNA COVID-19 vaccine to individuals with known or suspected PEG allergy is needed, though published evidence to date has shown no vaccine reactions in these cases.^{58,59} In these included studies, all re-vaccination occurred under the supervision of an allergy specialist, in a setting equipped to treat anaphylaxis. Table 2 details the certainty of evidence for this estimate, and Table E2 the risk of bias assessment. Figure E1 helps provide a practical translation for the testing precision.

651
652
653
654
655
656
657
658
659
660
661
662

Discussion: Allergy specialist guidance for non-COVID-19 vaccines recommends against withholding vaccination in vaccine or excipient allergic individuals. This differs from COVID-19 vaccine guidance that recommends withholding vaccination, which may have contributed to limiting the available evidence base for the meta-analysis.¹⁹⁻²² Severe allergic reactions occur very rarely with either initial or subsequent doses of mRNA COVID-19 vaccination.^{5,9} This should not preclude re-vaccinating persons who reacted to their initial dose or vaccinating persons allergic to one of the vaccine excipients, within the context of a shared decision-making approach of considering an alternative vaccine platform or deferring additional doses. There are data from small case series of persons with known PEG allergy who tolerated mRNA COVID-19 vaccine doses, and it has been demonstrated that mRNA COVID-19 vaccine reactions are unlikely to result from IgE mediated reactions to PEG.⁵⁵⁻⁶⁰

663
664
665
666
667
668

The very low rate of repeat immediate severe allergic reactions upon re-vaccination may be explainable by two hypotheses. First, there has been speculation that some non-IgE mediated reactions to injectable PEG-containing medications may be mediated through an anti-PEG IgG mechanism [eg. Complement Activation-Related Pseudoallergy (CARPA)]. Second, the phenomenon of Immunization Stress-Related Response (ISRR) – a benign phenomenon mimicking an allergic reaction, which can manifest as anxiety or stress-induced symptoms has

669 been identified as a common cause of adverse reactions after COVID-19 vaccination (Table
 670 E4)^{33,61}

671
 672 In formulating this recommendation, we weighed the potential benefits and harms of vaccination,
 673 and an allergic reaction, along with consideration of patient values, preferences, and cost. A
 674 shared decision-making approach should align individual contexts and circumstances with
 675 clinical action. Some patients may wish to change to a different brand of mRNA vaccine than the
 676 one they initially reacted to, which is not felt to represent any additional risk and is a preference-
 677 sensitive option to explore. Recommendations 4 and 5 provide explanation and context
 678 regarding further risk assessment and supervision for repeat vaccination after an initial reaction
 679 (or initial vaccination in the excipient allergic).
 680

681 Threshold agreement was achieved for the voting on this recommendation in the 1st round of
 682 voting (Table E3).
 683

684 **Question 4: In a patient with a history of an immediate allergic reaction of any severity to a**
 685 **previous mRNA COVID-19 vaccine or its excipients, should allergy skin testing to mRNA**
 686 **COVID-19 vaccines or their excipients be performed to determine if a future dose of**
 687 **vaccine should be withheld?**

688
 689 **Recommendation 4: For individuals with a history of an immediate allergic reaction to a**
 690 **mRNA COVID-19 vaccine or its excipients, we recommend against performing skin testing**
 691 **using any mRNA-COVID-19 vaccine or its excipients for the purpose of risk assessment to**
 692 **determine if they should receive a vaccine dose. Strong recommendation; Moderate**
 693 **Certainty of Evidence**
 694

695 **Evidence Summary:** A systematic review and meta-analysis detailed 20 studies among 317
 696 individuals with 1st dose immediate allergic reactions to the vaccine. These individuals
 697 underwent a total of 578 skin tests to any one or combination of either mRNA COVID-19
 698 vaccine, PEG, and PS for risk stratification assessment prior to being re-vaccinated with the
 699 same vaccine provoking the initial reaction.^{8,32,34-36,38-42,45,47,48,51,53,54,59,62-65} Test sensitivity for
 700 either mRNA vaccine was 0.2 (95%CrI 0.01-0.52) and specificity 0.97 (95%CrI 0.9-1). PEG test
 701 sensitivity was 0.02 (95%CrI 0.00-0.07) and specificity 0.99 (95%CrI 0.96-1). PS test sensitivity
 702 was 0.03 (95%CrI 0.00-0.11) and specificity 0.97 (95%CrI 0.91-1).⁸ Combined for using any
 703 of the 3 testing agents, sensitivity was 0.03 (95%CrI 0.00-0.08) and specificity was 0.98
 704 (95%CrI 0.95-1.00) (Figures 3 and 4). Multiple sensitivity analyses accounting for studies
 705 permitting use of graded dosing (n=9 studies), premedication (n=8 studies), or including patients
 706 with 1st dose anaphylaxis (n=17 studies) did not alter the main findings, but test sensitivity was
 707 increased in one analysis for individual vaccine testing in predicting severe second dose
 708 reactions (6 total severe second dose reactions occurred, 4 in persons with no detectable
 709 sensitization). Sensitivity analysis was also performed to account for persons with 1st dose
 710 reactions who deferred evaluation or a 2nd dose in the studies. This presumed that 25% or 50%
 711 of the total number of deferring patients underwent full evaluation and were considered as true
 712 positive cases (e.g., best-case scenario), which improved sensitivity to 0.22 (any test), 0.32
 713 (PEG), and 0.48 (any vaccine).⁸ One study included in the meta-analysis noted that use of
 714 Refresh Tears for PS testing led to an irritant response, resulting in false positive responses in

715 12/25 non-allergic control subjects tested.³⁸ Table 3 details the certainty of evidence for this
 716 estimate, and Table E2 the risk of bias assessment.

717
 718 **Discussion:** Vaccine excipient allergy is a very rare but possible cause of allergic reactions to
 719 vaccines.^{18,23} Despite suspicion without definitive proof of a role for PEG2000-lipid conjugate as
 720 causing IgE-mediated mRNA COVID-19 vaccine reactions,^{17,18} the vaccine remains largely
 721 contraindicated by health authorities in persons with known or suspected PEG allergy.^{19,21,22}
 722 PEG skin testing in non-COVID-19 vaccine settings has low sensitivity.⁵ Skin testing to both
 723 PEG (as well as PS) and the mRNA vaccine was initially proposed to assess vaccine-related
 724 immediate allergic reactions.⁴ The meta-analysis found very poor sensitivity for skin testing to
 725 either the vaccine, PEG, or PS in predicting repeat immediate allergic reactions of any severity,
 726 and concluded that skin testing had limited utility for this purpose.⁸ Some groups advocate use of
 727 a specific PEG testing algorithm, which includes testing to very high MW PEG, to increase
 728 sensitivity.⁶⁶ The high specificity of vaccine or vaccine excipient testing does not infer a high
 729 accuracy in identifying persons who are not allergic to the vaccine or excipient, but more likely
 730 indicates testing with non-relevant components which also are not irritant.⁸ While we
 731 recommend against skin testing to PEG, PS or to the mRNA COVID-19 vaccine itself as a
 732 means to predict risk of a severe allergic reaction to a COVID-19 vaccine, this approach is
 733 independent of incidentally discovering during evaluation of a mRNA COVID-19 vaccine
 734 reaction that a patient history indicates a strong likelihood of prior PEG allergy. In that context,
 735 the clinician may wish to consider PEG testing or PEG oral challenge as part of the workup to
 736 confirm PEG allergy for other decision-making purposes, apart from the mRNA COVID-19
 737 vaccine-related issue.^{16,67,68} One paper suggests that there is differing allergenicity between
 738 PEGylated liposomes (e.g. the PEG content in vaccines) and unmodified PEG polymer (e.g. PEG
 739 in medications).⁶⁹

740
 741 Threshold agreement was achieved for the voting on this recommendation on the 1st round of
 742 voting (Table E3).

743
 744 **Question 5: In a patient with a history of an immediate allergic reaction of any severity to**
 745 **a previous mRNA COVID-19 vaccine or its excipients, what is the most appropriate setting**
 746 **for these individuals to receive their vaccination?**

747
 748 **Recommendation 5:** We suggest referral to an allergist (or other clinician with expertise
 749 in the management of vaccine allergy and allergic reactions) for assessment and supervised
 750 vaccination of such individuals for their initial dose, or for the subsequent dose after a
 751 reaction to a prior dose.

752
 753 **Conditional Recommendation, Moderate Certainty Evidence**

754
 755 **Evidence Summary:** The meta-analyzed data demonstrating both the low risk of repeat severe
 756 reactions and the poor utility in skin testing to vaccine and vaccine excipients to predict the risk
 757 of a recurrent reaction were all from studies performed under allergist guidance.^{8,9} Similarly,
 758 studies of PEG or PS allergic individuals who were vaccinated to mRNA COVID-19 vaccines
 759 were also performed under allergist guidance.

760

761 **Discussion:** Vaccination or revaccination of patients with a history of an allergic reaction to the
 762 vaccine or its excipients most likely lies outside the comfort of most general vaccine clinics, who
 763 likely have had limited experience in managing patients with these risks.⁵ The panel also
 764 recognizes that it may be difficult for both hospital and non-hospital based allergy practices to
 765 have access to mRNA COVID-19 vaccine, given supply issues and storage requirements,
 766 complicating matters for patients seeking vaccination. These patients should ideally be
 767 vaccinated under the supervision of a clinician (ideally a physician specialist) with knowledge of
 768 ISRR, and who is trained in recognizing and managing anaphylaxis, in a setting equipped to
 769 manage such reactions. If the mRNA COVID-19 vaccination being supervised in this context is
 770 tolerated, additional doses can be done in standard fashion (e.g., without allergy specialist
 771 supervision).²³ Many decisions may still be preference-sensitive, and this guidance relies on the
 772 willingness of those within the field to implement the recommendations, and the affected patients
 773 to seek care.⁵ We caveat that this recommendation is formulated within the first 2 years of the
 774 experience with mRNA COVID-19 vaccine reactions, and future published evidence may
 775 evolve.

776
 777 Threshold agreement was achieved for the voting on this recommendation on the 1st round of
 778 voting (Table E3). The panel, however, further deliberated whether contextual factors such as
 779 equitable and rapid access to specialist settings is uniformly available to all patients, and also
 780 considered that patient values and preference for needing to see a specialist before repeat
 781 vaccination may vary. Hence, the panel agreed to issue a conditional instead of strong
 782 recommendation. This second round also reached threshold consensus with a single vote (Table
 783 E3).

784
 785 **Question 6: Should a patient with a history of an immediate allergic reaction to the vaccine
 786 or its excipient be pre-medicated prior to receiving their vaccine to prevent a severe
 787 allergic reaction?**

788
 789 **Recommendation 6:** We suggest against routine H1-antihistamine or systemic
 790 corticosteroid pre-medication prior to vaccination to prevent anaphylaxis.
 791 **Conditional Recommendation, low certainty of evidence**

792
 793 **Question 7: Should a patient with a history of an immediate allergic reaction to the vaccine
 794 or its excipients receive their vaccine as a graded dose rather than a single dose?**

795
 796 **Recommendation 7:** We suggest against graded dosing or stepwise desensitization
 797 compared to a single dose.
 798 **Conditional Recommendation, low certainty of evidence**

800 **Evidence Summary:** There is no evidence demonstrating benefit or necessity for either
 801 premedication or graded dosing. In both meta-analyses of the risk of 2nd dose reactions, when
 802 stratifying by studies that permitted pre-medication vs. not, or graded dose challenges vs. single
 803 dose, there was no difference in outcomes seen.^{8,9} However, none of these included studies were
 804 specifically designed or powered to assess these questions. Persons who take daily or frequent
 805 antihistamines or glucocorticosteroids for the management of other conditions should not
 806 discontinue taking these on the day of receiving their mRNA COVID-19 vaccine. Rather, this

807 guidance suggests against specific use (or requirement) of pre-medication. A possible exception
 808 to this may be in the case of a patient with systemic mastocytosis.⁷⁰ While a shared decision-
 809 making approach can be considered for those who may otherwise be hesitant to receive initial or
 810 subsequent mRNA COVID-19 vaccination without premedication or graded dosing (or who have
 811 systemic mastocytosis and are considered at high general risk for anaphylaxis), neither are
 812 necessary or required for safe vaccination in the patient with mRNA COVID-19 excipient
 813 allergy or a history of a reaction to a prior vaccine dose.
 814

815 **Discussion:** While graded dosing (or stepwise desensitization) and pre-medication with either
 816 antihistamine or glucocorticosteroids are considered generally safe approaches, neither are
 817 required and have not been proven necessary compared to no pre-medication and/or
 818 administering a single vaccine dose in persons with a history of reaction to the vaccine or
 819 vaccine excipient.²³ These management options are consistent with recommendations in past
 820 vaccine allergy practice parameters, and may still be preferred steps by some patients and
 821 administering clinicians.⁵ A 2-step graded challenge (and in older guidance, multi-step
 822 desensitization) in individuals with previous immediate allergic reactions to a non-COVID
 823 vaccine has been a suggested management step, despite no data establishing that this is either
 824 necessary or provides a definitive safety benefit (as opposed to an accommodation that makes
 825 either the patient or clinician more comfortable).²³ While no RCT comparing single vs. 2-step
 826 graded challenges for mRNA COVID-19 vaccination has been performed, one was performed
 827 for influenza vaccine that showed no difference in outcome between the approaches.^{63,71} It is
 828 reasonable to expect that this finding would generalize to other vaccines. There is no evidence to
 829 suggest that split dosing results in a different immune response than a single dose.⁶³ Similarly,
 830 many allergists have considered antihistamine (with or without glucocorticosteroid) pre-
 831 medication for such patients, as is customary in allergen immunotherapy patients experiencing
 832 frequent local or even prior systemic reactions.⁷² Glucocorticoid premedication in the context of
 833 anaphylaxis prevention has limited value and potential harm in most, but not all, settings.⁷³ With
 834 mRNA COVID-19 vaccination, there is concern that glucocorticosteroid premedication could
 835 potentially inhibit immune response to the vaccine.⁵ The panel recognizes there is an important
 836 role for shared decision-making in discussing risk and benefits of vaccination, including options
 837 for both conservative and aggressive approaches to re-vaccination, given some patients may be
 838 reluctant to be re-vaccinated. Consultation with a clinician trained in the management of adverse
 839 reactions to vaccines, such as a board-certified allergist, can be beneficial in helping to assess
 840 and manage such patients, especially in determining the likelihood that a prior reaction was
 841 allergic and being able to differentiate between anaphylaxis or an immune-mediated reaction and
 842 an ISRR.^{33,61}

843
 844 Threshold agreement was achieved for the voting on these recommendations on the 1st round of
 845 voting (Table E3).

846
 847 **Special Circumstances**
 848 *Are patients with allergic co-morbidities more likely to have mRNA COVID-19 Vaccine
 849 Reactions?*
 850 For persons with co-morbid allergic disease (including mast cell disorders or prior anaphylaxis to
 851 any food, medication, or vaccine) apart from a PEG, PS, or prior mRNA COVID-19 vaccine

852 reaction, we suggest against special precautions for mRNA COVID-19 vaccination, including
 853 needing specialist supervision.⁷⁰

854

855 *How Should Patients with a History of an Allergic Reaction to a mRNA-COVID-19 Vaccine or*
 856 *Vaccine Excipient be Managed in Resource Limited Settings Where Allergy Consultation Is Not*
 857 *Available?*

858 In resource limited settings where allergy specialist referral is not readily available, alternative
 859 care models may be presented in a shared decision-making context to patients with a history of
 860 mRNA COVID-19 vaccine or excipient allergy in order to provide assessment and opportunity
 861 for vaccination by remote consultation, use of alternative vaccine products, or vaccination in any
 862 setting where patients can be monitored and treated for anaphylaxis to help avoid delay in
 863 vaccination.

864

865 *How Should Concerns About the Bivalent mRNA COVID-19 Vaccine, or Initial Reactions*
 866 *Occuring on Booster Doses be Managed?*

867 It is possible that someone may initially tolerate their first mRNA COVID-19 vaccine dose or
 868 doses and react to a subsequent dose. These scenarios and rates of reaction detailed herein
 869 would apply to the risk of reaction to any next dose if there is no history of reaction to any prior
 870 dose, and the risk of reaction to a subsequent dose if there is a reaction to the prior dose.

871

872 Please refer to the supplemental material for further discussion of special circumstances.

873

874 **Limitations**

875 This document has several limitations. First, this guidance is limited to immediate allergic
 876 reactions occurring within the first four hours of mRNA COVID-19 vaccination. There are
 877 several delayed-onset symptoms that have been reported post-mRNA COVID-19 vaccination,
 878 including “Moderna Arm”, and unmasking or worsening of chronic urticaria.⁷⁴⁻⁷⁷ These, as well
 879 as non-allergic post-vaccination complications such as myocarditis, dyspnea, Guillain Barre
 880 Syndrome, and vaccine-induced thrombocytopenia have been excluded from analysis and
 881 discussion in this guidance, as they fall outside the scope of the immediate post-vaccination
 882 period. Second, experience with vaccination/re-vaccination and skin testing persons with
 883 COVID-19 excipient allergy or a 1st dose reaction is limited, and the studies had heterogeneity
 884 in the testing methods which could have influenced the low pooled test sensitivity estimates.
 885 Third, these recommendations remain limited to the populations that have been studied. It is
 886 likely that some patients with first dose reactions opted to not receive a second dose, or were not
 887 studied, and there could be differences between the groups that pursued second dose vaccination
 888 and those who did not. The data from which the recommendations were formulated have come
 889 largely from US studies (some with high risk of bias), performed under allergist supervision at
 890 tertiary centers, and we acknowledge an information gap in managing these issues in low to
 891 middle income or resource-limited areas.^{5,8,9} It is possible that recommendations may be made by
 892 an allergy specialist to direct another care provider who is actually administering the vaccine,
 893 which may not be acceptable to a clinician with less experience in these issues, resulting in
 894 modification to the stated recommendations in how to proceed with such patients. The Evidence
 895 to Decision Framework supplement provides a summary reflection of the evidence in the context
 896 of the clinical recommendation and helps balance the recommendations in light of these
 897 limitations and contexts where the options are highly preference-sensitive. Fourth, we re-

898 emphasize some recommendations are not intended to be carried out in ***routine medical settings***
899 (***e.g., non-allergy specialist setting such as a pharmacy or community vaccination center***).
900 Some of these outlined approaches are intended to be performed in facilities staffed with
901 personnel skilled and trained to be able to assess and treat an allergic reaction (e.g., epinephrine
902 is available and staff are trained to recognize anaphylaxis and use epinephrine), and where it is
903 possible to provide direct post-vaccination observation of patients for 15 minutes. Fifth, data on
904 mRNA and non-mRNA COVID-19 vaccination continue to evolve, at times rapidly, and there
905 are remaining questions and unmet needs that could not be answered in this document or at this
906 time, which are summarized in table 4. Lastly, this document follows the Institute of Medicine
907 standards for trustworthy clinical practice guidelines⁷⁸ (Table E5) with the exception of patient
908 stakeholder and public involvement, given this was not an officially sponsored professional
909 society document or practice parameter, but rather a broad medical expert consensus statement
910 regarding an evidenced-based practice, who have incorporated their experiences in managing
911 such patients, which was felt to reflect the input and preferences of those patients.
912

913 The recommendations contained herein are based on GRADE-based evidence synthesis that
914 underwent further evaluation through a large consensus of international experts. However, these
915 should be considered and adapted within the context of patient care with a role for shared
916 decision-making, which can be very individualized based on particular circumstances, in the
917 setting of an evolving literature. Therefore, there may be individual situations or patients where,
918 under a shared decision-making paradigm, the clinician may choose an alternative practice than
919 outlined in this guidance. Table E6 summarizes the key points of the updated guidance.
920

921 Conclusion

922 This document provides an updated evidence-based expert international consensus stressing a
923 patient-centered approach involving consideration of the risks and benefits of receiving mRNA
924 COVID-19 vaccination in the setting of possible immediate allergic complications, applicable to
925 initial doses and any subsequent booster doses. This will continue to be a living document that
926 will require periodic updating due to still emerging needs assessment, including further research
927 data on the nature of vaccine-associated reactions and the necessity of potential risk-assessment
928 measures.
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

944
945
946
947
948
949
950
951
952

953 References

954 1. Johns Hopkins University Coronavirus Resource Center Accessed October 28, 2022
955 Available from: <https://coronavirus.jhu.edu/maphtml>

956 2. https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_02A_pril2022.pdf. Accessed April 13, 2022.

957 3. Banerji A, Wolfson AR, Wickner PG, Cogan AS, McMahon AE, Saff R, et al. COVID-19
958 Vaccination in Patients with Reported Allergic Reactions: Updated Evidence and Suggested
959 Approach. *J Allergy Clin Immunol Pract* 2021;9:2135-8.

960 4. Banerji A, Wickner PG, Saff R, Stone CA, Jr., Robinson LB, Long AA, et al. mRNA Vaccines
961 to Prevent COVID-19 Disease and Reported Allergic Reactions: Current Evidence and Suggested
962 Approach. *J Allergy Clin Immunol Pract* 2021;9:1423-37.

963 5. Greenhawt M, Abrams EM, Shaker M, Chu DK, Khan D, Akin C, et al. The Risk of Allergic
964 Reaction to SARS-CoV-2 Vaccines and Recommended Evaluation and Management: A
965 Systematic Review, Meta-Analysis, GRADE Assessment, and International Consensus Approach.
966 *J Allergy Clin Immunol Pract* 2021;9:3546-67.

967 6. Klimek L, Jutel M, Akdis CA, Bousquet J, Akdis M, Torres MJ, et al. ARIA-EAACI statement
968 on severe allergic reactions to COVID-19 vaccines - An EAACI-ARIA Position Paper. *Allergy*
969 2021;76:1624-8.

970 7. Ruggeberg JU, Gold MS, Bayas JM, Blum MD, Bonhoeffer J, Friedlander S, et al.
971 Anaphylaxis: case definition and guidelines for data collection, analysis, and presentation of
972 immunization safety data. *Vaccine* 2007;25:5675-84.

973 8. Greenhawt M, Shaker M, Golden DBK, Abrams EM, Blumenthal KG, Wolfson AR, et al.
974 Diagnostic accuracy of vaccine and vaccine excipient testing in the setting of allergic reactions
975 to COVID-19 vaccines: A systematic review and meta-analysis. *Allergy* 2023;78:71-83.

976 9. Chu DK, Abrams EM, Golden DBK, Blumenthal KG, Wolfson AR, Stone CA, Jr., et al. Risk
977 of Second Allergic Reaction to SARS-CoV-2 Vaccines: A Systematic Review and Meta-analysis.
978 *JAMA Intern Med* 2022;182:376-85.

979 10. Chu DK, Golden DBK, Guyatt GH. Translating Evidence to Optimize Patient Care Using
980 GRADE. *J Allergy Clin Immunol Pract* 2021;9:4221-30.

981 11. Brozek JL, Akl EA, Alonso-Coello P, Lang D, Jaeschke R, Williams JW, et al. Grading quality
982 of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. An
983 overview of the GRADE approach and grading quality of evidence about interventions. *Allergy*
984 2009;64:669-77.

987 12. Brozek JL, Akl EA, Jaeschke R, Lang DM, Bossuyt P, Glasziou P, et al. Grading quality of
 988 evidence and strength of recommendations in clinical practice guidelines: Part 2 of 3. The
 989 GRADE approach to grading quality of evidence about diagnostic tests and strategies. *Allergy*
 990 2009;64:1109-16.

991 13. Brozek JL, Akl EA, Compalati E, Kreis J, Terracciano L, Fiocchi A, et al. Grading quality of
 992 evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The
 993 GRADE approach to developing recommendations. *Allergy* 2011;66:588-95.

994 14. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data
 995 capture (REDCap)--a metadata-driven methodology and workflow process for providing
 996 translational research informatics support. *J Biomed Inform* 2009;42:377-81.

997 15. Abrams EM, Greenhawt M, Shaker M, Kosowan L, Singer AG. Primary care provider-
 998 reported prevalence of vaccine and polyethylene glycol allergy in Canada. *Ann Allergy Asthma*
 999 *Immunol* 2021;127:446-50 e1.

1000 16. Stone CA, Jr., Liu Y, Relling MV, Krantz MS, Pratt AL, Abreo A, et al. Immediate
 1001 Hypersensitivity to Polyethylene Glycols and Polysorbates: More Common Than We Have
 1002 Recognized. *J Allergy Clin Immunol Pract* 2019;7:1533-40 e8.

1003 17. Copaesu AM, Rosa Duque JS, Phillips EJ. What have we learned about the allergenicity
 1004 and adverse reactions associated with the severe acute respiratory syndrome coronavirus 2
 1005 vaccines: One year later. *Ann Allergy Asthma Immunol* 2022;129:40-51.

1006 18. Kelso JM. The adverse reactions to vaccines practice parameter 10 years on-what have
 1007 we learned? *Ann Allergy Asthma Immunol* 2022;129:35-9.

1008 19. [https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-
 1009 us.html#contraindications](https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html#contraindications). Accessed April 13, 2022.

1010 20. [https://www.csaci.ca/wp-content/uploads/2021/11/2021-11-15-UPDATE-COVID-19-
 Vaccine-Testing-Administration-Guidance.pdf](https://www.csaci.ca/wp-content/uploads/2021/11/2021-11-15-UPDATE-COVID-19-

 1011 Vaccine-Testing-Administration-Guidance.pdf). Accessed December 10, 2021.

1012 21. [https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-
 reactions/coronavirus-vaccine-summary-of-yellow-card-reporting](https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-

 1013 reactions/coronavirus-vaccine-summary-of-yellow-card-reporting). Accessed March 3, 2021.

1014 22. [https://www.allergy.org.au/hp/papers/ascia-hp-position-statement-covid-19-
 vaccination](https://www.allergy.org.au/hp/papers/ascia-hp-position-statement-covid-19-

 1015 vaccination). Accessed April 13, 2022.

1016 23. Kelso JM, Greenhawt MJ, Li JT, Nicklas RA, Bernstein DI, Blessing-Moore J, et al. Adverse
 1017 reactions to vaccines practice parameter 2012 update. *J Allergy Clin Immunol* 2012;130:25-43.

1018 24. McNeil MM, Weintraub ES, Duffy J, Sukumaran L, Jacobsen SJ, Klein NP, et al. Risk of
 1019 anaphylaxis after vaccination in children and adults. *J Allergy Clin Immunol* 2016;137:868-78.

1020 25. Dreskin SC, Halsey NA, Kelso JM, Wood RA, Hummell DS, Edwards KM, et al.
 1021 International Consensus (ICON): allergic reactions to vaccines. *World Allergy Organ J* 2016;9:32.

1022 26. Su JR, Moro PL, Ng CS, Lewis PW, Said MA, Cano MV. Anaphylaxis after vaccination
 1023 reported to the Vaccine Adverse Event Reporting System, 1990-2016. *J Allergy Clin Immunol*
 1024 2019;143:1465-73.

1025 27. Maltezou HC, Anastassopoulou C, Hatziantoniou S, Poland GA, Tsakris A. Anaphylaxis
 1026 rates associated with COVID-19 vaccines are comparable to those of other vaccines. *Vaccine*
 1027 2022;40:183-6.

1028 28. Sampson HA, Munoz-Furlong A, Campbell RL, Adkinson NF, Jr., Bock SA, Branum A, et al.
 1029 Second symposium on the definition and management of anaphylaxis: summary report--Second

1030 National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network
 1031 symposium. *J Allergy Clin Immunol* 2006;117:391-7.

1032 29. Cardona V, Ansotegui IJ, Ebisawa M, El-Gamal Y, Fernandez Rivas M, Fineman S, et al.
 1033 World allergy organization anaphylaxis guidance 2020. *World Allergy Organ J* 2020;13:100472.

1034 30. Hourihane JO, Byrne AM, Blumchen K, Turner PJ, Greenhawt M. Ascertainment Bias in
 1035 Anaphylaxis Safety Data of COVID-19 Vaccines. *J Allergy Clin Immunol Pract* 2021;9:2562-6.

1036 31. Gold MS, Amarasinghe A, Greenhawt M, Kelso JM, Kochhar S, Yu-Hor Thong B, et al.
 1037 Anaphylaxis: Revision of the Brighton collaboration case definition. *Vaccine* 2022.

1038 32. Warren CM, Snow TT, Lee AS, Shah MM, Heider A, Blomkalns A, et al. Assessment of
 1039 Allergic and Anaphylactic Reactions to mRNA COVID-19 Vaccines With Confirmatory Testing in a
 1040 US Regional Health System. *JAMA Netw Open* 2021;4:e2125524.

1041 33. Picard M, Stone CA, Jr., Greenhawt M. Management of patients with immediate
 1042 reactions to COVID-19 vaccines. *J Allergy Clin Immunol* 2023;151:413-5.

1043 34. Tuong LAC, Capucilli P, Staicu M, Ramsey A, Walsth E, Mustafa SS. Graded
 1044 Administration of Second Dose of Moderna and Pfizer-BioNTech COVID-19
 1045 mRNA Vaccine in Patients with Hypersensitivity to First Dose. *Open Forum Infect Dis*. 2021 Oct
 1046 6;8(12):ofab507.

1047 35. Krantz MS, Bruusgaard-Mouritsen MA, Koo G, Phillips EJ, Stone CA, Jr., Garvey LH.
 1048 Anaphylaxis to the first dose of mRNA SARS-CoV-2 vaccines: Don't give up on the second dose!
 1049 *Allergy* 2021;76:2916-20.

1050 36. Rasmussen TH, Mortz CG, Georgsen TK, Rasmussen HM, Kjaer HF, Bindslev-Jensen C.
 1051 Patients with suspected allergic reactions to COVID-19 vaccines can be safely revaccinated after
 1052 diagnostic work-up. *Clin Transl Allergy* 2021;11:e12044.

1053 37. Krantz MS, Kwah JH, Stone CA, Jr., Phillips EJ, Ortega G, Banerji A, et al. Safety Evaluation
 1054 of the Second Dose of Messenger RNA COVID-19 Vaccines in Patients With Immediate
 1055 Reactions to the First Dose. *JAMA Intern Med* 2021;181:1530-3.

1056 38. Wolfson AR, Robinson LB, Li L, McMahon AE, Cogan AS, Fu X, et al. First-Dose mRNA
 1057 COVID-19 Vaccine Allergic Reactions: Limited Role for Excipient Skin Testing. *J Allergy Clin
 1058 Immunol Pract* 2021;9:3308-20 e3.

1059 39. Kessel A, Bamberger E, Nachshon L, Rosman Y, Confino-Cohen R, Elizur A. Safe
 1060 administration of the Pfizer-BioNTech COVID-19 vaccine following an immediate reaction to
 1061 the first dose. *Allergy* 2021;76:3538-40.

1062 40. Kelso JM. Misdiagnosis of systemic allergic reactions to mRNA COVID-19 vaccines. *Ann
 1063 Allergy Asthma Immunol* 2021;127:133-4.

1064 41. Mustafa SS, Ramsey A, Staicu ML. Administration of a Second Dose of the Moderna
 1065 COVID-19 Vaccine After an Immediate Hypersensitivity Reaction With the First Dose: Two Case
 1066 Reports. *Ann Intern Med* 2021;174:1177-8.

1067 42. Vanijcharoenkarn K, Lee FE, Martin L, Shih J, Sexton ME, Kuruvilla ME. Immediate
 1068 Reactions After the First Dose of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
 1069 2) Messenger RNA Vaccines Do Not Preclude Second-Dose Administration. *Clin Infect Dis*
 1070 2021;73:2108-11.

1071 43. Robinson LB, Landman AB, Shenoy ES, Hashimoto D, Fu X, Camargo CA, Jr., et al. Allergic
 1072 symptoms after mRNA COVID-19 vaccination and risk of incomplete vaccination. *J Allergy Clin
 1073 Immunol Pract* 2021;9:3200-2 e1.

1074 44. Eastman J, Holsworth A, Kelbel T, Pebbles T, Hartog N. Cohort experience of 2nd mRNA
 1075 vaccine dose tolerance after an initial dose reaction. *Ann Allergy Asthma Immunol.*
 1076 2022;128:217-218.

1077 45. Park HJ, Montgomery JR, Boggs NA. Anaphylaxis After the Covid-19 Vaccine in a Patient
 1078 With Cholinergic Urticaria. *Mil Med* 2022;187:e1556-e8.

1079 46. Arroliga ME, Dhanani K, Arroliga AC, Huddleston PS, Trahan J, Aguilar T, et al. Allergic
 1080 reactions and adverse events associated with administration of mRNA-based vaccines. A health-
 1081 care system experience. *Allergy Asthma Proc* 2021;42:395-9.

1082 47. Loli-Ausejo D, Gonzalez de Abreu JM, Fiandor A, Cabanas R, Dominguez-Ortega J,
 1083 Caballero ML, et al. Allergic reactions after administration of pfizer-biontech covid-19 vaccine to
 1084 healthcare workers at a tertiary hospital. *J Investig Allergol Clin Immunol* 2021;0.

1085 48. Pitlick MM, Sitek AN, Kinate SA, Joshi AY, Park MA. Polyethylene glycol and polysorbate
 1086 skin testing in the evaluation of coronavirus disease 2019 vaccine reactions: Early report. *Ann*
 1087 *Allergy Asthma Immunol* 2021;126:735-8.

1088 49. Yacoub MR, Cucca V, Asperti C, Ramirez GA, Della-Torre E, Moro M, et al. Efficacy of a
 1089 rational algorithm to assess allergy risk in patients receiving the BNT162b2 vaccine. *Vaccine*
 1090 2021;39:6464-9.

1091 50. Shavit R, Maoz-Segal R, Iancovici-Kidon M, Offengenden I, Haj Yahia S, Machnes Maayan
 1092 D, et al. Prevalence of Allergic Reactions After Pfizer-BioNTech COVID-19 Vaccination Among
 1093 Adults With High Allergy Risk. *JAMA Netw Open* 2021;4:e2122255.

1094 51. Kohli-Pamnani A, Zapata K, Gibson T, Kwittken PL. Coronavirus disease 2019 vaccine
 1095 hypersensitivity evaluated with vaccine and excipient allergy skin testing. *Ann Allergy Asthma*
 1096 *Immunol* 2022;128:97-8.

1097 52. Inoue S, Igarashi A, Morikane K, Hachiya O, Watanabe M, Kakehata S, et al. Adverse
 1098 reactions to BNT162b2 mRNA COVID-19 vaccine in medical staffs with a history of allergy.
 1099 *medRxiv* 2021;2021.09.13.21263473.

1100 53. Carpenter T, Konig J, Hochfelder J, Siegel S, Gans M. Polyethylene glycol and polysorbate
 1101 testing in 12 patients before or after coronavirus disease 2019 vaccine administration. *Ann*
 1102 *Allergy Asthma Immunol* 2022;128:99-101.

1103 54. Kaplan B, Farzan S, Coscia G, Rosenthal DW, McInerney A, Jongco AM, et al. Allergic
 1104 reactions to coronavirus disease 2019 vaccines and addressing vaccine hesitancy: Northwell
 1105 Health experience. *Ann Allergy Asthma Immunol* 2022;128:161-8 e1.

1106 55. Rush C, Faulk KE, Bradley ZK, Turner A, Krumins M, Greenhawt M. The safety of SARS-
 1107 CoV-2 vaccines in persons with a known history of pegaspargase allergy: A single institution
 1108 experience. *J Allergy Clin Immunol Pract* 2022;10:630-2.

1109 56. Koo G, Anvari S, Friedman DL, Zarnegar-Lumley S, Szafron V, Kahwash BM, et al. mRNA
 1110 COVID-19 vaccine safety in patients with previous immediate hypersensitivity to pegaspargase.
 1111 *J Allergy Clin Immunol Pract* 2022;10:322-5.

1112 57. Mark C, Gupta S, Punnett A, Upton J, Orkin J, Atkinson A, et al. Safety of administration
 1113 of BNT162b2 mRNA (Pfizer-BioNTech) COVID-19 vaccine in youths and young adults with a
 1114 history of acute lymphoblastic leukemia and allergy to PEG-asparaginase. *Pediatr Blood Cancer*
 1115 2021;68:e29295.

1116 58. Picard M, Drolet JP, Masse MS, Filion CA, F AL, Fein M, et al. Safety of COVID-19
 1117 vaccination in patients with polyethylene glycol allergy: A case series. *J Allergy Clin Immunol*
 1118 Pract 2022;10:620-5 e1.

1119 59. Otani IM, Tsao LR, Tang M. Coronavirus disease 2019 vaccine administration in patients
 1120 with reported reactions to polyethylene glycol- and polysorbate-containing therapeutics. *Ann*
 1121 *Allergy Asthma Immunol* 2022;129:88-94 e1.

1122 60. Mortz CG, Kjaer HF, Rasmussen TH, Rasmussen HM, Garvey LH, Bindslev-Jensen C.
 1123 Allergy to polyethylene glycol and polysorbates in a patient cohort: Diagnostic work-up and
 1124 decision points for vaccination during the COVID-19 pandemic. *Clin Transl Allergy*
 1125 2022;12:e12111.

1126 61. Immunization stress-related response. A manual for program managers and health
 1127 professionals to prevent, identify and respond to stress- related responses following
 1128 immunization. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.
 1129 <https://appswhoint/iris/bitstream/handle/10665/330277/9789241515948-engpdf>.

1130 62. F AL, Fein M, Gabrielli S, Gilbert L, Tsoukas C, Ben-Shoshan M, et al. Allergic reactions to
 1131 the coronavirus disease 2019 vaccine (ARCOV) study: The McGill University Health Centre
 1132 experience. *Ann Allergy Asthma Immunol* 2022;129:182-8 e1.

1133 63. Van Meerbeke SW, Fajt ML, Marini RV, Domsic RT, Petrov AA. Antibody response to
 1134 graded dosing of coronavirus disease 2019 messenger RNA vaccines after allergic reaction to
 1135 first dose. *Ann Allergy Asthma Immunol* 2022;129:373-4.

1136 64. Csuth A, Nopp A, Storsaeter J, Nilsson L, Jenmalm MC. COVID-19 vaccines and
 1137 anaphylaxis-evaluation with skin prick testing, basophil activation test and Immunoglobulin E.
 1138 *Clin Exp Allergy* 2022;52:812-9.

1139 65. Cahill JA, Kan M. Successful administration of second dose of BNT162b2 COVID-19
 1140 vaccine in two patients with potential anaphylaxis to first dose. *Allergy* 2022;77:337-8.

1141 66. Bruusgaard-Mouritsen MA, Jensen BM, Poulsen LK, Duus Johansen J, Garvey LH.
 1142 Optimizing investigation of suspected allergy to polyethylene glycols. *J Allergy Clin Immunol*
 1143 2022;149:168-75 e4.

1144 67. Zhou ZH, Stone CA, Jr., Jakubovic B, Phillips EJ, Sussman G, Park J, et al. Anti-PEG IgE in
 1145 anaphylaxis associated with polyethylene glycol. *J Allergy Clin Immunol Pract* 2021;9:1731-3 e3.

1146 68. Sellaturay P, Nasser S, Ewan P. Polyethylene Glycol-Induced Systemic Allergic Reactions
 1147 (Anaphylaxis). *J Allergy Clin Immunol Pract* 2021;9:670-5.

1148 69. Troelnikov A, Perkins G, Yuson C, Ahamdie A, Balouch S, Hurtado PR, et al. Basophil
 1149 reactivity to BNT162b2 is mediated by PEGylated lipid nanoparticles in patients with PEG
 1150 allergy. *J Allergy Clin Immunol* 2021;148:91-5.

1151 70. Bonadonna P, Brockow K, Niedoszytko M, Elberink HO, Akin C, Nedoszytko B, et al.
 1152 COVID-19 Vaccination in Mastocytosis: Recommendations of the European Competence
 1153 Network on Mastocytosis (ECNM) and American Initiative in Mast Cell Diseases (AIM). *J Allergy*
 1154 *Clin Immunol Pract* 2021;9:2139-44.

1155 71. Greenhawt MJ, Spergel JM, Rank MA, Green TD, Mansoor D, Sharma H, et al. Safe
 1156 administration of the seasonal trivalent influenza vaccine to children with severe egg allergy.
 1157 *Ann Allergy Asthma Immunol* 2012;109:426-30.

1158 72. Cox L, Nelson H, Lockey R, Calabria C, Chacko T, Finegold I, et al. Allergen
 1159 immunotherapy: a practice parameter third update. *J Allergy Clin Immunol* 2011;127:S1-55.

1160 73. Shaker MS, Wallace DV, Golden DBK, Oppenheimer J, Bernstein JA, Campbell RL, et al.
1161 Anaphylaxis-a 2020 practice parameter update, systematic review, and Grading of
1162 Recommendations, Assessment, Development and Evaluation (GRADE) analysis. *J Allergy Clin
1163 Immunol* 2020;145:1082-123.

1164 74. McMahon DE, Amerson E, Rosenbach M, Lipoff JB, Moustafa D, Tyagi A, et al. Cutaneous
1165 reactions reported after Moderna and Pfizer COVID-19 vaccination: A registry-based study of
1166 414 cases. *J Am Acad Dermatol* 2021;85:46-55.

1167 75. Magen E, Yakov A, Green I, Israel A, Vinker S, Merzon E. Chronic spontaneous urticaria
1168 after BNT162b2 mRNA (Pfizer-BioNTech) vaccination against SARS-CoV-2. *Allergy Asthma Proc*
1169 2022;43:30-6.

1170 76. Blumenthal KG, Ahola C, Anvari S, Samarakoon U, Freeman EE. Delayed large local
1171 reactions to Moderna COVID-19 vaccine: A follow-up report after booster vaccination. *JAAD Int*
1172 2022;8:3-6.

1173 77. Blumenthal KG, Freeman EE, Saff RR, Robinson LB, Wolfson AR, Foreman RK, et al.
1174 Delayed Large Local Reactions to mRNA-1273 Vaccine against SARS-CoV-2. *N Engl J Med*
1175 2021;384:1273-7.

1176 78. Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical
1177 Practice Guidelines; Graham R, Mancher M, Miller Wolman D, et al., editors. *Clinical Practice
1178 Guidelines We Can Trust*. Washington (DC): National Academies Press (US); 2011. Summary.
1179 Available from: <https://www.ncbi.nlm.nih.gov/books/NBK209538/>.

1180 79. Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, et al. Drug allergy:
1181 A 2022 practice parameter update. *J Allergy Clin Immunol* 2022;150:1333-93.

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

Journal Pre-proof

Table 1: GRADE Recommendations

1. What is the risk of COVID-19 vaccine anaphylaxis in a patient with no history of anaphylaxis to a COVID-19 vaccine or its excipients?	1a. For patients with no history of a previous allergic reaction to a COVID-19 vaccine or its excipients, the risk of first-dose COVID-19 vaccine-induced anaphylaxis is exceptionally low, and we recommend vaccination over either no vaccination or vaccine deferral. 1b. For patients with a history of a severe allergic reaction, including anaphylaxis, unrelated to a mRNA COVID-19 vaccine or vaccine excipient, we suggest against additional post-vaccination observation beyond standard wait time (e.g., 15 minutes).	Strong	High
2. In patients without a history of anaphylaxis to a mRNA COVID-19 vaccine or its excipients, should allergy skin testing to mRNA COVID-19 vaccines or its excipients be performed prior to initial mRNA COVID-19 vaccination?	2. For patients without a history of an immediate allergic to a mRNA COVID-19 vaccine or its excipients, we recommend against vaccine or vaccine excipient testing to predict the rare individual who will have a severe allergic reaction to a vaccine dose.	Strong	Low
3. Can additional supervised doses of mRNA COVID-19 vaccines be administered to a patient who had an immediate allergic reaction of any severity following the 1st vaccine dose?	3. We recommend that individuals who had an immediate allergic reaction of any severity to their 1st mRNA COVID-19 vaccine dose can receive additional doses, and those with a history of an immediate allergic reaction of any severity to its excipients can receive either their initial or additional mRNA COVID-19 vaccine doses.	Strong	Moderate
4. In a patient with a history of an immediate allergic reaction of any severity to a previous mRNA COVID-19 vaccine or its excipients, should allergy skin testing to mRNA COVID-19 vaccines or their excipients be performed to determine if a future dose of vaccine should be withheld?	4. For individuals with a history of an immediate allergic reaction to a mRNA COVID-19 vaccine or its excipients, we recommend against performing skin testing using any mRNA-COVID-19 vaccine or its excipients for the purpose of risk assessment to determine if they should receive a vaccine dose.	Strong	Moderate
5. In a patient with a history of an immediate allergic reaction of any severity to a previous mRNA COVID-19 vaccine or its excipients, what is the most appropriate setting for these individuals to receive their vaccination?	5. We suggest referral to an allergist (or other clinician with expertise in the management of vaccine allergy and allergic reactions) for assessment and supervised vaccination of such individuals for their initial dose, or for the subsequent dose after a reaction to a prior dose.	Conditional	Moderate
6. Should a patient with a history of an immediate allergic reaction to the vaccine or vaccine excipient be pre-medicated prior to receiving their vaccine to prevent a severe allergic reaction?	6. We suggest against routine H1-antihistamine or systemic corticosteroid pre-medication prior to vaccination to prevent anaphylaxis.	Conditional	Low
7. Should a patient with a history of an immediate allergic reaction to the vaccine or vaccine excipient receive their vaccine as a graded dose rather than a single dose?	7. We suggest against graded dosing or stepwise desensitization compared to a single dose.	Conditional	Low

Abbreviations: mRNA COVID-19= messenger RNA; mRNA COVID-19= messenger RNA coronavirus disease of 2019 vaccine

Summary of GRADE recommendations regarding the management of primary COVID-19 vaccination and mRNA-COVID-19 re-vaccination in persons with a known or suspected history of allergy to the vaccine excipients (primary, re-vaccination) or to the vaccine (re-vaccination)

Table 2: GRADE Certainty of Evidence Table for Questions Regarding Reaction Incidence

For Questions Related to Reaction Rates		No of studies	Certainty assessment						Effect			Certainty	Importance
Question/Outcome Assessed			Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	No of events	No of individuals	Rate (95% CI)		
Question 1: What is the risk of COVID-19 vaccine anaphylaxis in a patient with no history of anaphylaxis to a COVID-19 vaccine or its excipients		47	observational studies and RCTs	Not serious	not serious ^{a,b}	not serious	not serious	none	674 (208) ^c	57,089,598 (41,018,326) ^c	event rate ^c 7.91 per 1,000,000 (4.02 to 15.59)	⊕⊕⊕ HIGH	CRITICAL
Question 3: Can additional supervised doses of mRNA COVID-19 vaccines be administered to a patient who had an immediate allergic reaction of any severity following the 1st dose of the vaccine?													
a) What is the incidence of anaphylaxis to a second SARS-CoV-2 vaccination in persons who had an allergic reaction to their first dose		22	Case studies and case reports	Not serious ^d	Not serious	Not serious	Not serious	Large effect of tolerating and Residual confounding would suggest an effect of reacting when none was detected ^e	6	1366	0.16% (0.01% to 2.91%)	⊕⊕⊕○ MODERATE	CRITICAL
b) What is the incidence of anaphylaxis to a second SARS-CoV-2 vaccination in persons who had an anaphylaxis to their first dose		17	Case studies and case reports	Not serious ^d	Not serious	Not serious	Not serious ^f	Large effect of tolerating and Residual confounding would suggest an effect of reacting when none was detected ^{e,f}	4	78	4.94% (0.93% to 22.28%)	⊕⊕○○ LOW	CRITICAL
c) What is the incidence of mild allergic symptoms to a second SARS-CoV-2 vaccination in persons who had an allergic reaction to their first dose		22	Case studies and case reports	Not serious ^d	Not serious	Not serious	Not serious	Large effect of tolerating and Residual confounding would suggest an effect of reacting when none was detected ^e	232	1366	13.5% (7.66% to 22.27%)	⊕⊕⊕○ MODERATE	CRITICAL

Abbreviations: COVID-19=coronavirus disease of 2019; SARS Co-V 2: severe acute respiratory syndrome novel coronavirus 2; CI=confidence interval; mRNA COVID-19= messenger RNA coronavirus disease of 2019 vaccine

a. Non-adjudicated rates yield estimates that are higher than adjudicated ones by about 5-fold.

b. One adjudicated study yielded a markedly higher estimate than all others. It also was the only study that was not a national pharmacovigilance study. Though it contributed to some heterogeneity, it was not felt that this was so serious to rate down for inconsistency because the (1) estimate of effect was still rare, (2) excluding this study, yielding a pooled estimate of 6.43 (3.57-11.56) events per million doses was not importantly different in terms of rarity, (3) that this study was balanced by other studies with 0 events, and (4) visual inspection did not reveal serious inconsistency.

c. Values in parentheses are data restricted to studies with 20,000 or more doses.

d. Risk of bias addressed in subgroup and sensitivity analyses

e. A history of allergic reaction to previous COVID vaccination was a priori thought to guarantee a reaction to repeated doses, but far fewer than all individuals that received the second dose had an allergic reaction or anaphylaxis. Further, those being revaccinated, after an initial allergic reaction, would be at higher likelihood to be intensely monitored for any possible allergic reaction, whereas those without any history of an allergic reaction would not be.

f. Imprecision in width of CIs and total sample size sufficient to prevent rating up certainty for considerations of residual confounding, but not to rate down; the qualitative effect of the incidence of repeat anaphylaxis being not very high (eg. 100%) is more certain than the quantitative estimate of a mean of 4.94%.

GRADE summary of the certainty of evidence for questions 1 and 3, which deal with the prevalence of first dose (all COVID-19 vaccine types) and incidence of second dose (mRNA-COVID-19 vaccine only) presumed allergic reactions.

For Questions Related to Diagnostic Testing	Nb of studies (Nb of patients)	Study design	Factors that may decrease certainty of evidence					Effect per 1,000 patients tested			Test accuracy CoE								
			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability 0.001%	pre-test probability 1%	pre-test probability 10%									
Question 2: In patients without a history of anaphylaxis to a mRNA COVID-19 vaccine or its excipients, should allergy skin testing to mRNA COVID-19 vaccines excipients be performed prior to initial mRNA vaccination? Sn: 0.59 (95%CI 0.44 to 0.72), Sp: 0.99 (95%CI 0.98 to 1.00) Prevalence : 0.001%, 1%, 10%																			
True positives (patients with excipient allergy)	15 studies 296 patients	cohort & case-control type studies	serious ^a	serious ^b	Not serious ^c	Not serious ^d	Publication bias strongly suspected all plausible residual confounding would reduce the demonstrated effect	0 (0 to 0)	6 (1 to 8)	64 (5 to 76)	⊕⊕○○ LOW								
False negatives (patients incorrectly classified as not having excipient allergy)								0 (0 to 0)	4 (2 to 9)	36 (24 to 95)									
True negatives (patients without excipient allergy)								995 (977 to 999)	985 (967 to 989)	896 (879 to 899)									
False positives (patients incorrectly classified as having excipient allergy)								5 (1 to 23)	5 (1 to 23)	4 (1 to 21)									
Question 4: In a patient with a history of an immediate allergic reaction of any severity to a previous mRNA COVID-19 vaccine or its excipients, should allergy skin testing to mRNA COVID-19 vaccines or their excipients be performed to determine if a future dose of vaccine should be withheld?																			
For any testing agent, combined: Sn: 0.03 (95%CI 0.00-0.08) Sp: 0.98 (95%CI 0.95 -1) Prevalence 2 nd dose reaction: 0.16%																			
True positives (vaccine allergic)	20 studies 93 patients	cohort & case series	not serious	not serious	not serious	serious ^e	none	Pre-test probability 0.16%			⊕⊕⊕○ Moderate								
False negatives (misclassified not allergic)								0 (0 to 0)											
True negatives (not vaccine allergic)								2 (2 to 2)											
False positives (misclassified vaccine allergic)								976 (944 to 996)											
For either mRNA vaccine agent: Sn: 0.2(95%CI 0.01-0.52) Sp: 0.97(95%CI 0.9-1) Prevalence 2nd dose reactions: 0.16%																			
True positives (vaccine allergic)	14 studies 14 patients	cohort & case series	not serious	not serious	not serious	very serious ^e	none	Pre-test probability 0.16%			⊕⊕○○ Low								
False negatives (misclassified not allergic)								0 (0 to 0)											
True negatives (not vaccine allergic)								2 (2 to 2)											
False positives (misclassified vaccine allergic)								964 (854 to 998)											
For polyethylene glycol: Sn: 0.02 (95%CI 0-0.07) Sp: 0.99 (95%CI 0.95-1) Prevalence 2 nd dose reactions: 0.16%																			
True positives (vaccine allergic)	19 studies 46 patients	cohort & case series	not serious	not serious	not serious	serious ^e	none	Pre-test probability 0.16%			⊕⊕⊕○ Moderate								
False negatives (misclassified not allergic)								0 (0 to 0)											
True negatives (not vaccine allergic)								2 (2 to 2)											
False positives (misclassified vaccine allergic)								985 (947 to 998)											
For polysorbate: Sn: 0.03 (95%CI 0-0.11) Sp: 0.97 (95%CI 0.91-1) Prevalence 2 nd dose reactions: 0.16%																			
True positives (vaccine allergic)	13 studies 33 patients	cohort & case series	not serious	not serious	not serious	serious ^e	none	Pre-test probability 0.16%			⊕⊕⊕○ Moderate								
False negatives (misclassified not allergic)								0 (0 to 0)											
								2 (2 to 2)											

For Questions Related to Diagnostic Testing Question/Outcome Assessed	Nb of studies (Nb of patients)	Study design	Factors that may decrease certainty of evidence					Effect per 1,000 patients tested			Test accuracy CoE	
			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability 0.001%	pre-test probability 1%	pre-test probability 10%		
								968 (914 to 998)				
True negatives (not vaccine allergic)	13 studies 131 patients	cohort & case series						30 (0 to 84)				
False positives (misclassified vaccine allergic)												

Explanations: a. These were all case reports, with non-random selection of cases and controls; b. Challenges to the agents were not performed to confirm accuracy of the testing; c. Different agents and methods were used for testing and reported positives from these tests; d. Low numbers of cases were tested to derive these estimates. Bias is suspected as authors are more likely to report

Abbreviations: CI=credibility interval; mRNA COVID-19= messenger RNA coronavirus disease of 2019 vaccine; Sn=sensitivity; Sp=specificity; CoE=certainty of evidence

GRADE summary of the certainty of evidence for questions 2 and 4 which pertain to the diagnostic accuracy (sensitivity, specificity) of vaccine excipient testing as a screening measure prior to receiving an initial mRNA COVID-19 vaccine in persons without a history of allergic reaction to the vaccine or its excipients (question 2), or testing to either mRNA COVID-19 vaccine or the vaccine excipients in persons with a history of a reaction to an initial mRNA COVID-19 vaccine (question 4), as a means of predicting an allergic reaction to the vaccine dose.

Table 4: Prior Knowledge Gaps and Unmet Needs Regarding COVID-19 Vaccination and Risk of Allergic Reactions

Knowledge Gaps	Current Knowledge
Definitive identification of an immunologic mechanism for reactions	Appears non-IgE mediated in most cases, and may involve Immune Stress Response Reactions (ISRR), though the precise mechanism remains unclear ⁶¹
Determination of a known excipient(s) as an allergen	Unlikely to be anti-PEG and/or Polysorbate IgE in most cases ^{8,17,32}
Determination of risk for receiving COVID-19 vaccines containing an excipient to which a recipient is allergic	Likely low, based on study of PEG-asparagase allergic children, and documented PEG allergic individuals given polysorbate or PEG2000 containing vaccine ⁵⁷⁻⁶⁰
Determination of risk in receiving a 2 nd dose of a COVID-19 vaccine after an allergic reaction to the 1 st dose	Risk of a severe allergic reaction upon re-vaccination is 0.16%; risk of a repeat severe allergic reactions is 4.9%; risk of non-severe symptoms is 13% ⁹
Establish testing sensitivity, specificity, and reliability for use of the vaccine and/or vaccine excipients as a testing reagent	Meta-analysis of test sensitivity for PEG is 2%, for Polysorbate is 3%, for either mRNA vaccine is 19%, and combined for any agent is 3% ⁸
Accurate determination of the incidence of allergic reactions, including anaphylaxis	Adjudicated severe allergic reaction rate is 7.91 reactions per million doses; this may be an overestimate as features of ISRR can be classified as anaphylaxis under Brighton criteria ⁵
Identification of potential risk factors associated with immediate or delayed reactions	Studies in process which may better determine if allergic co-morbidity, atopy or underlying mast-cell disease increases risk, though the low overall baseline probability of anaphylaxis to the vaccine may complicate such efforts (www.clinicaltrials.gov , NCT04761822)
Effectiveness of testing or how test results influence vaccination hesitancy	Testing appears unnecessary and not predictive of vaccination outcomes or safety ⁸
Effectiveness of single versus graded/split dosing for risk-assessment	From data of meta-analysis of 2 nd dose reactions, there was no difference in 2 nd dose outcomes if the 2 nd dose was given as a single or a 2-step graded dose ^{8,10}
Necessity of additional post-vaccination observation time for risk-assessment	For patients with a reaction history, a 30-minute observation time is recommended, but not been proven safer than standard wait times, and longer wait time is not cost-effective ⁵
Efficacy of mixed vaccine platform schedule	Studies in process, but this regimen appears unnecessary based on allergic risk
Stability of graded /split dosing for mRNA vaccines	Stable for this purpose, but no difference in allergic outcomes if given as single or 2-step graded dose ^{8,10,62,63}
Determination of durable immunity conferred by 1 st dose of a vaccine to assist in determining risk/reward of additional doses	At least 3 doses are necessary for full immunity; yearly (or potentially more frequent) boosters being proposed. However, estimation of how effective subsequent doses are at providing protection against disease contraction and severe complications is evolving. No concern for immediate severe allergic safety signals have been noted with these additional doses after the primary series. (https://www.cdc.gov/coronavirus/2019-ncov/vaccines/index.html)
Unmet Needs	Progress to Date
Consensus on reporting standards for anaphylaxis related to vaccines (Brighton Collaboration Criteria vs. NIAID or WAO criteria	Update to the Brighton Collaboration Criteria published in 2022 ³¹
Development of an active surveillance system for vaccine reactions	No published progress
Preparedness and training of personnel at vaccination clinics to properly identify and treat potential anaphylaxis.	Anaphylaxis awareness efforts are ongoing
Consideration for use of placebo dosing, under a shared decision-making paradigm, for determining validity of a reaction in patients with underlying anxiety	Clinical trial underway. The AAAAI/ACAAI Allergy Joint Task Force 2022 Drug Allergy Practice Parameter ⁷⁹ discusses similar use of placebo dosing for administering drugs in which there is a reported past allergic reaction. (www.clinicaltrials.gov , NCT04761822)
Assessment of vaccine or excipient reactions in resource poor settings (e.g., rural, low/middle income countries)	No published progress. Knowledge gap as to what rate of reactions may be acceptable in such settings vs. what would be tolerated or handled in settings with better resources

Abbreviations: COVID-19=coronavirus disease of 2019; mRNA COVID-19= messenger RNA coronavirus disease of 2019 vaccine; PEG=polyethylene glycol; mRNA=messenger RNA; NIAID=National Institutes of Allergy and Infectious Diseases; WAO=World Allergy Organization; AAAAI=American Academy of Allergy Asthma and Immunology; ACAAI=American College of Allergy Asthma and Immunology; ISRR: Immune Stress Response Reaction

Summary of unmet needs and knowledge gaps regarding the diagnosis, management, and risk of allergic reactions to mRNA COVID-19 vaccines.

Figures and Legends

Figure 1: Incidence of Adjudicated Anaphylaxis Reported in Association with COVID-19 Vaccination

Legend: Internationally reported adjudicated rates of anaphylaxis to initial doses of mRNA COVID-19 vaccines. Published from reference 5 with permission.

Figure 2: Pooled incidence of immediate allergic reactions of any severity to a 2nd mRNA COVID-19 vaccine dose among persons who had an immediate allergic reaction to their 1st mRNA COVID-19 vaccine dose.

Legend: Pooled incidence for (A) severe 2nd dose reactions; (B) non-severe 2nd dose reactions; and (C) repeat severe reactions. Adapted and modified from reference 9.

Figure 3: Sensitivity and Specificity of mRNA COVID-19 Vaccine or Vaccine Excipient Skin Testing to Evaluate the Risk of a Second Dose Reaction

Legend: Forrest plot of the sensitivity and specificity for (A) the combined analysis of skin testing to polyethylene glycol, polysorbate, or either mRNA COVID-19 vaccine; (B) skin testing to either mRNA COVID-19 vaccine. Published from reference 8 with permission.

Figure 4: Sensitivity and Specificity of mRNA COVID-19 Vaccine Excipient Skin Testing to Evaluate the Risk of a Second Dose Reaction

Legend: Forrest plot of the sensitivity and specificity for the (A) polyethylene glycol or (B) polysorbate in predicting the risk of a 2nd dose immediate allergic reaction to a mRNA COVID-19 vaccine. Published from reference 8 with permission.

Figure 1:

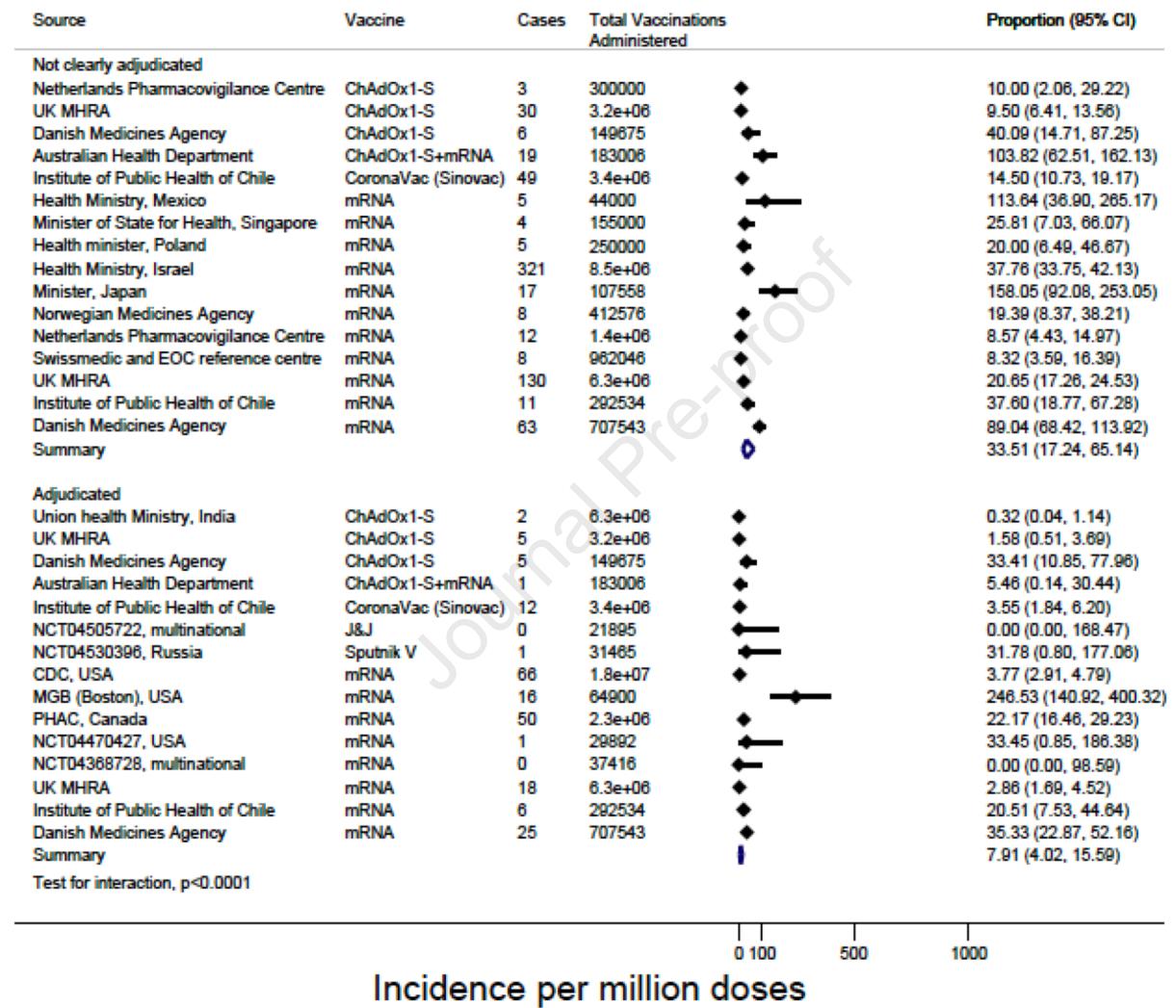
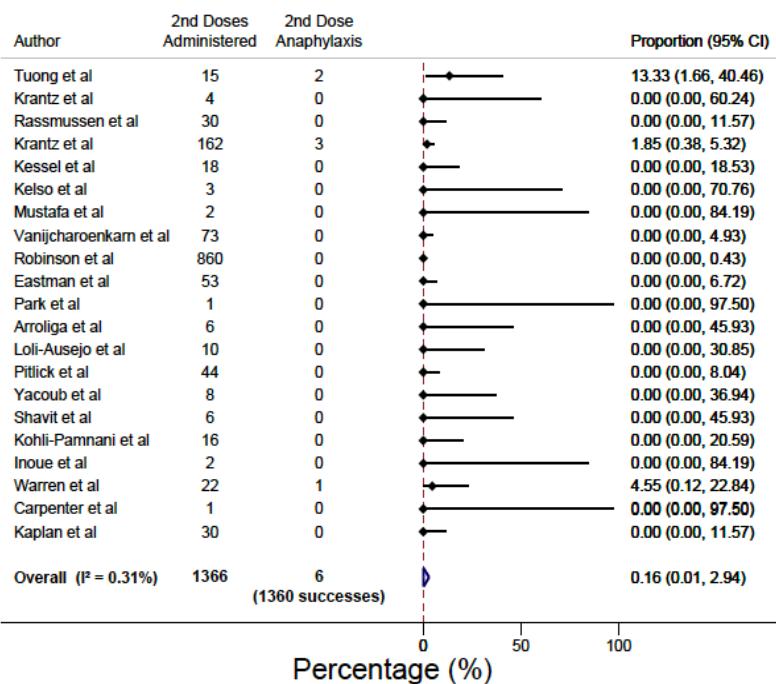
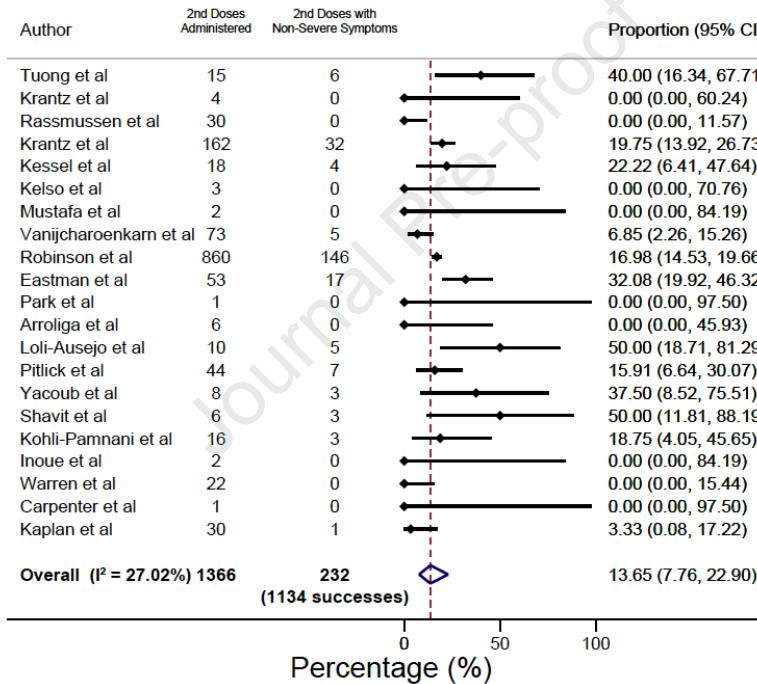




Figure 2

A

B

C

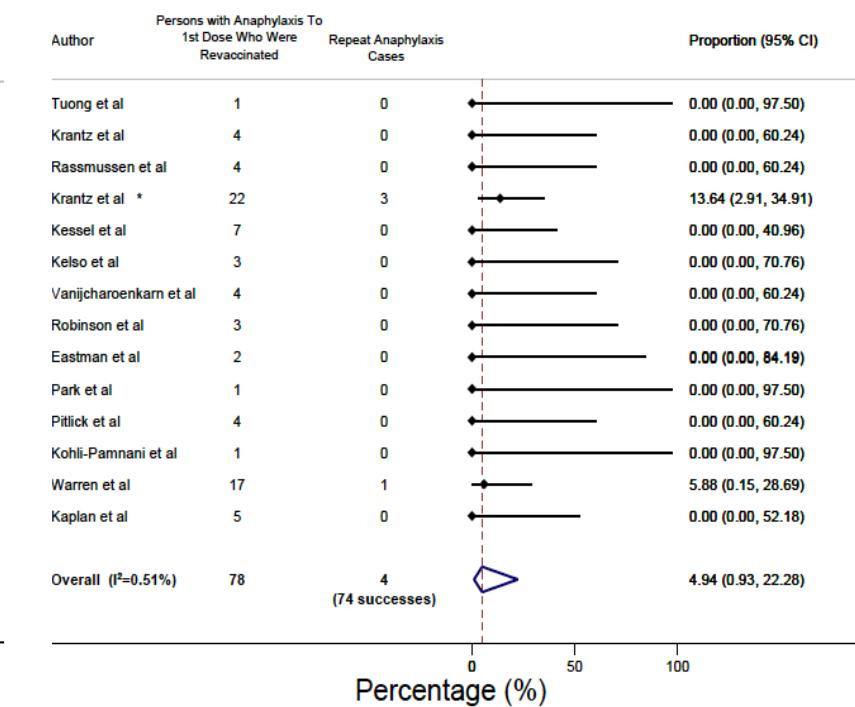
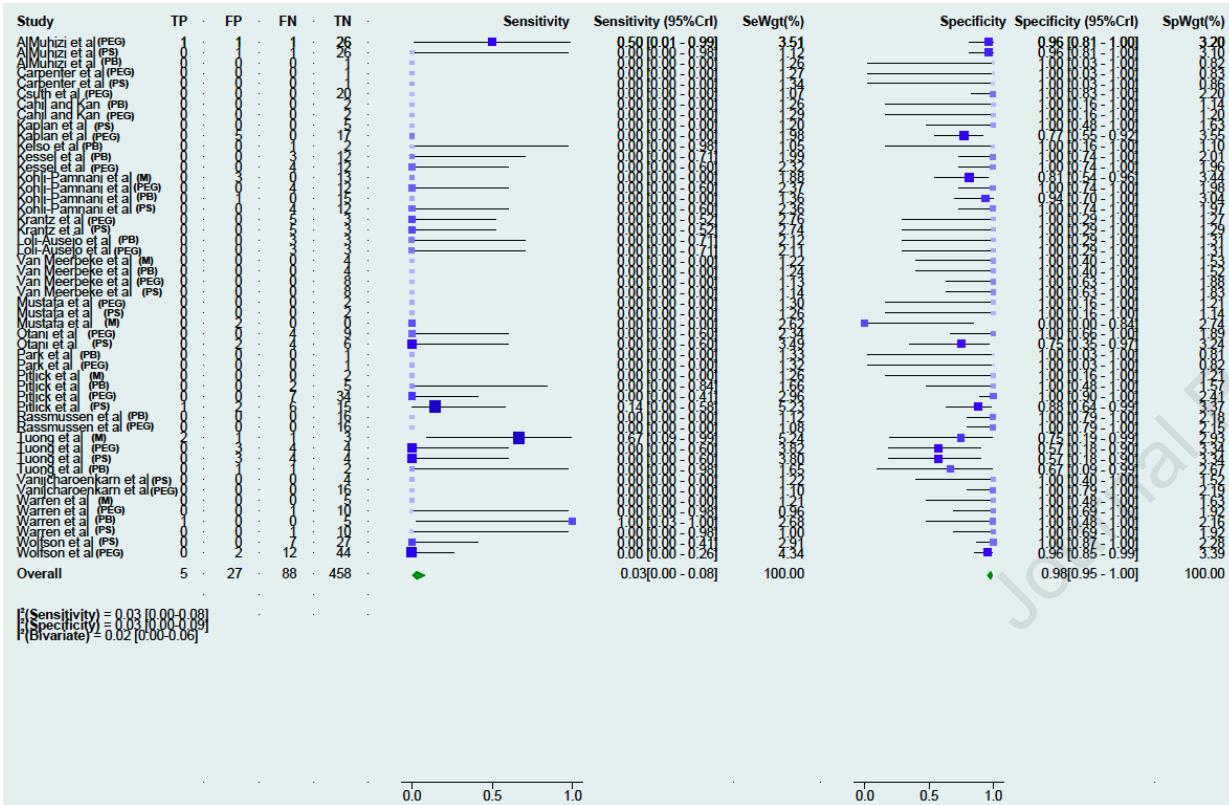



Figure 3

A

B

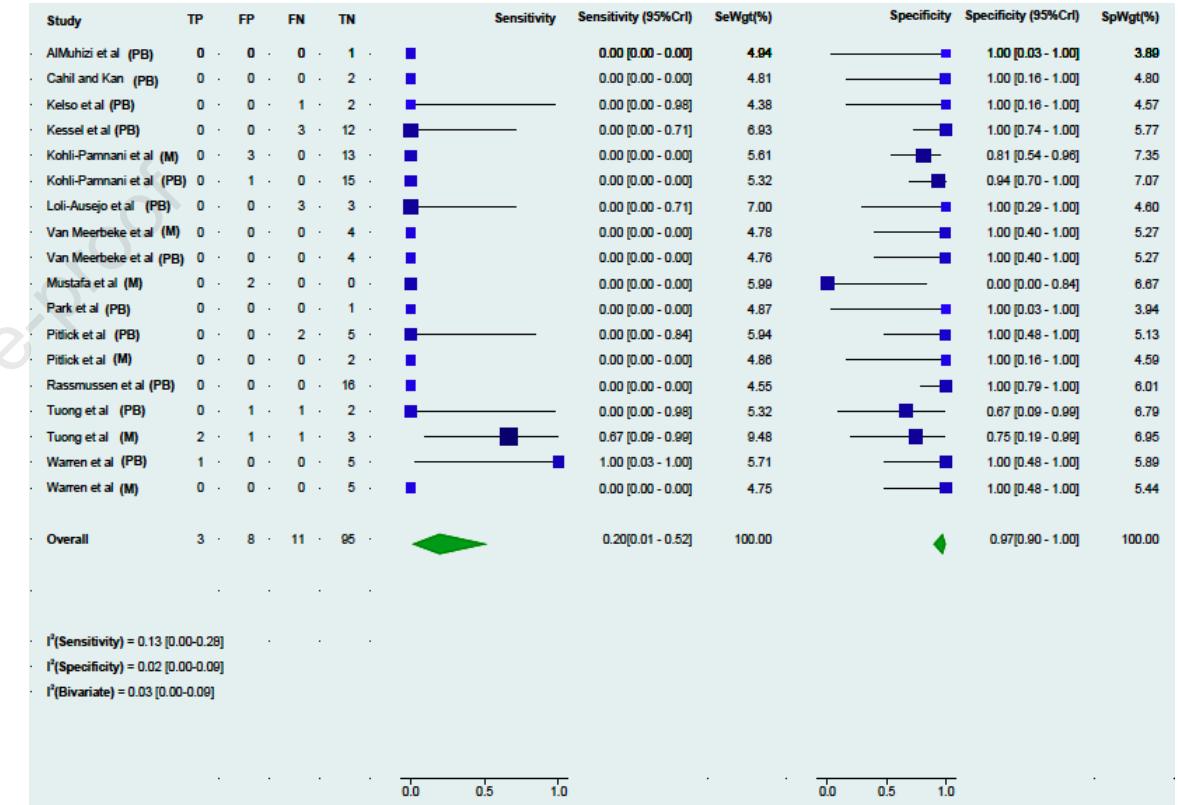
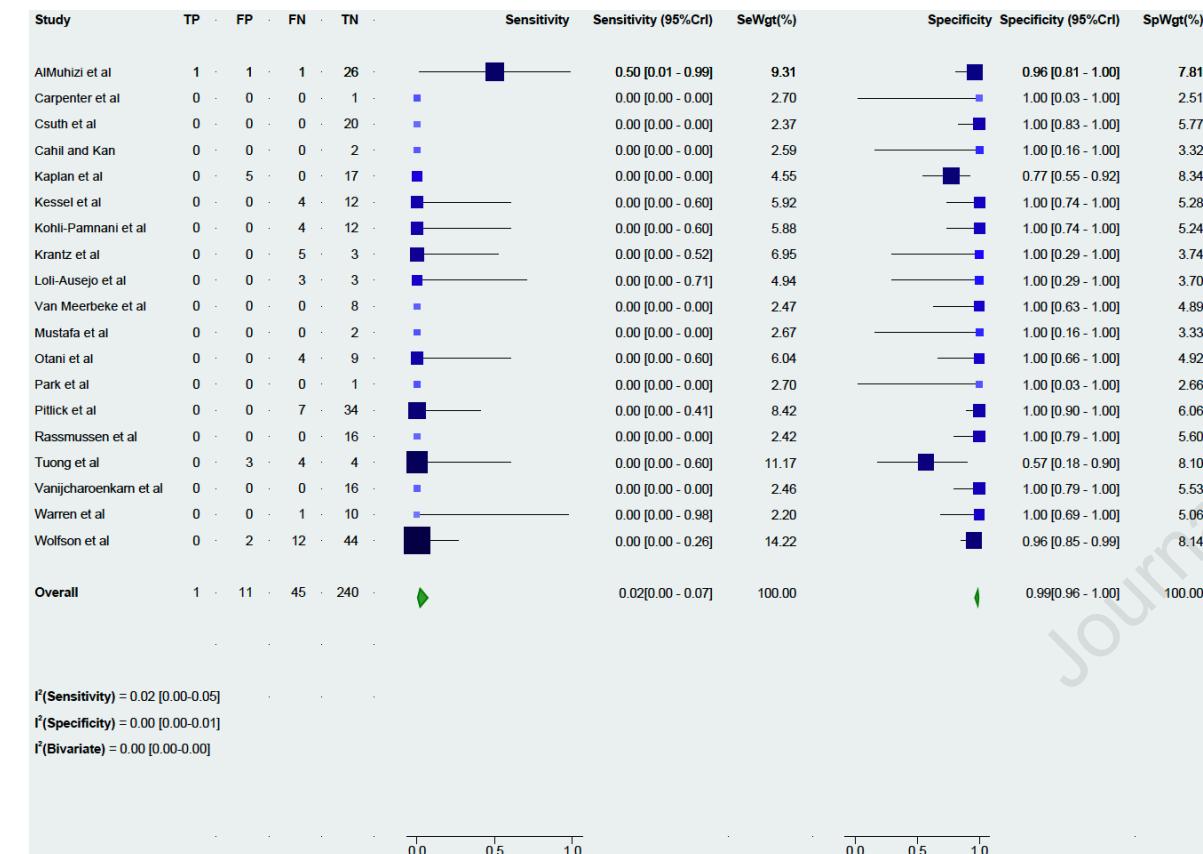
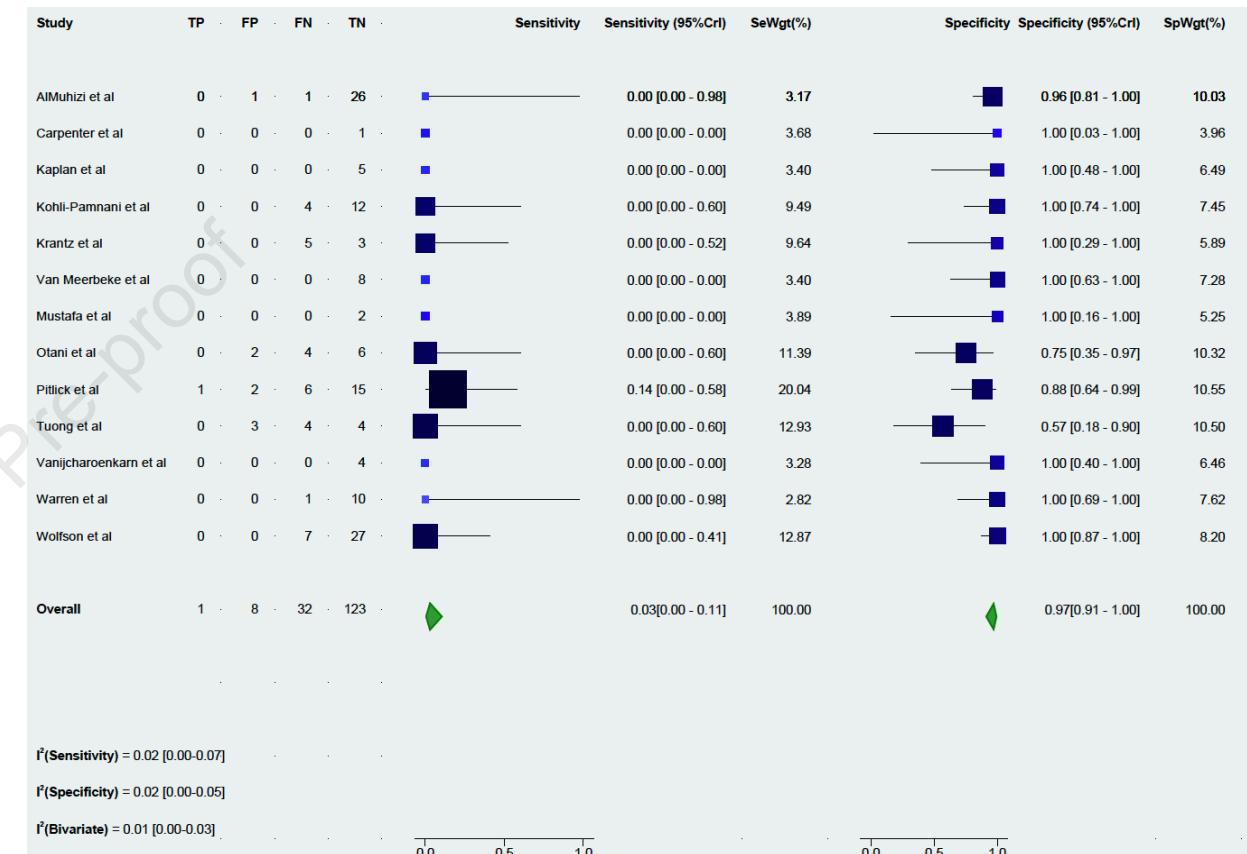




Figure 4

A

B

