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ABSTRACT
PEGylation technology, that is grafting of poly(ethylene glycol)(PEG) to biologics, vaccines and 
nanopharmaceuticals, has become a cornerstone of modern medicines with over thirty products used 
in the clinic. PEGylation of therapeutic proteins, nucleic acids and nanopharmaceuticals improves their 
stability, pharmacokinetic and biodistribution. While PEGylated medicines are safe in the majority of 
patients, there are growing concerns about the emergence of anti-PEG antibodies and their impact on 
the therapeutic efficacy of PEGylated medicines as well as broader immune responses, particularly in 
complement activation and hypersensitivity reactions. These concerns are beginning to scrutinize the 
future viability of PEGylation technology in medicine design. Here, we outline these concerns, encourage 
more efforts into looking for comprehensive scientific evidence on the role of anti-PEG antibodies in 
hypersensitivity reactions, discuss alternatives to PEG and propose strategies for moving PEGylation 
technology forward.

1.  Introduction

In the dynamic world of drug delivery and biotechnology, 
few innovations have had as profound an impact as 
PEGylation: the covalent attachment of PEG to biomolecules, 
particulate drug delivery systems, cells, and implant and 
stent surfaces. Since the pioneering work of Frank Davis and 
coworkers on protein PEGylation (Abuchowski et  al. 1977; 
Davis et al. 1979; Gabizon et al. 2003), PEGylation has become 
a cornerstone of pharmaceutical formulation, particularly in 
enhancing the stability and therapeutic performance of pro-
tein drugs and of various drug delivery systems. The ease of 
synthesis and characterization of PEGylated proteins, poly-
mers and constructs further underscores their utility in a 
wide range of clinical products in the market and reviewed 
recently (Gao et  al. 2024). Particularly, the PEGylation protein 
market is experiencing rapid growth, where the global 
PEGylation proteins market size is currently estimated at US$ 
2.4 billion and is forecasted to reach over US$ 6 billion 
by 2034.

PEGylation has historically been praised for its ability to 
protect and prolong the circulation time of therapeutic 

molecules and nanomedicines (Davis et  al. 1979; Gabizon 
et  al. 2003; Gao et  al. 2024). These properties are endowed 
by PEG flexibility (due to the absence of double and triple 
bonds) and its ability to form hydrogen bonds with many 
water molecules. For example, PEG2000 is a polymer consisting 
of 45 ethylene oxide units that can bind to 136 water mole-
cules or about 3 water molecules per ethylene oxide unit, 
where the molecular weight of hydrated PEG2000 is more than 
double that of non-hydrated PEG (Tirosh et  al. 1998). High 
hydration and flexibility make PEG a bulky molecule, allowing 
it to sterically stabilize (involving elastic and osmotic contri-
butions) therapeutic proteins and nanoparticles and minimize 
their interaction with other molecules and cell surface recep-
tors (Davis et  al. 1979; Blume and Cevc 1990; Klibanov et  al. 
1990; Moghimi and Szebeni 2003). The density of PEG on the 
surface of proteins or nanoparticles influences the molecule’s 
conformation. Thus, at a low surface density, PEG assumes a 
‘mushroom’ conformation, while at high density it takes on a 
‘brush’ conformation (Moghimi and Szebeni 2003; Garbuzenko 
et  al. 2005). Today, it is widely recognized that the biological 
performance of a PEGylated construct (e.g., pharmacokinetics, 
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protein binding and macrophage sequestration) is dependent 
on the molecular weight of the PEG moiety and its surface 
density (reviewed by Haroon et  al. 2022).

As the field has evolved, the discourse surrounding 
PEGylation has increased, with recent debates highlighting 
both its revolutionary potential and emerging concerns, 
notably PEG safety (Chen et  al. 2021; Anchordoquy et  al. 
2024; Fu et  al. 2024; Simberg and Moghimi 2024). One sig-
nificant concern that has gained attention in recent years is 
the activation of the complement system (Simberg and 
Moghimi 2024), a critical component of the innate immune 
system, by PEGylated constructs. Complement activation 
and fixation is a double-edge sword; it offers a protective 
role against intruders through lysing and opsonization 
mechanisms, yet when uncontrolled, complement activation 
triggers proinflammatory reactions and organ damage 
(Haroon et  al. 2023). Hamad et  al. (2008) were the first to 
report complement activation on a time-scale of minutes by 
high concentrations of soluble PEG and in a PEG molecular 
weight-dependent manner, where high molecular weight 
PEGs (>10,000 Da) being most effective in activating human 
complement. Activation of the alternative pathway of com-
plement by high PEG concentration is thought to arise 
through water activity and effective hydration and confor-
mational changes of the third complement protein (C3), 
resulting in accelerated ‘C3 tickover’. The extent of PEG 
hydration increases with PEG molecular mass. Therefore, 
increasing PEG size and concentration both increases pro-
teins’ effective hydration. This is due to PEG being excluded 
from the protein’s surface as well as protein partitioning (C3 
in this case) into hydrophobic PEG phase, which compete 
with the steric exclusion (Bhat and Timasheff 1992). With 
low molecular weight PEGs (<5,000 Da), the PEG phase is 
too short resulting in exclusion of partitioned C3 due to 
reduced available water content, which could explain the 
poor ability of short PEGs in activating alternative pathway, 
unless PEG concentration is exceedingly high. In relation to 
the latter, a single subretinal injection of PEG 400 Da (1 mg 
in 2 µL) in mice was shown to induce choroidal neovascular-
isation through local complement activation (increased lev-
els of the C3 split products in retinal pigment epithelium 
and choroid, co-localised with C9 deposition), presumably 
through accelerated local C3 hydration and increased alter-
native pathways turnover (Lyzogubov et  al. 2011). PEGs also 
activate human complement through the lectin pathway 
(Hamad et  al. 2008).

It has widely been demonstrated that complement also 
recognizes PEGylated surfaces as foreign, including a wide 
range of PEGylated preclinical and clinical nanoparticle for-
mulations (Vu et  al. 2019; Moghimi et  al. 2020; Li et  al. 2024, 
Szebeni et  al. 2018, 2022). Quantitatively, these nanoparticles 
display very small amount of low molecular weight 
PEG-conjugates as in PEG-phospholipids (PEG = 2000–
5000 Da), but at comparable concentrations free PEG mole-
cules as well as PEG-phospholipid micelles do not activate 
complement (Moghimi et  al. 2006). These differences suggest 
that PEG conformation and density, PEG-conjugate linkage 
type and protein intercalation into the surface PEG cloud 
modulate complement activation by PEGylated nanoparticles 

(Moghimi et  al. 2020). Unintended complement activation, 
however, is problematic as it can reduce the effectiveness of 
the drug delivery system (e.g., by inducing drug leakage 
from liposomes and promoting nanoparticle clearance by 
phagocytic cells through C3 opsonization) and could poten-
tially lead to hypersensitivity through multifaceted mecha-
nisms (Szebeni et  al. 2018; Moghimi et  al. 2023).

Another major issue is the increasing incidence of anti-PEG 
antibodies of IgM and IgG (and to some extent IgE) classes 
in the population. These antibodies can develop in response 
to repeated exposure to PEGylated substances, such as 
through cosmetics, food, or vaccines, including those for 
COVID-19 (Chen et  al. 2021; Ju et  al. 2022; Zhou et  al. 2023; 
Fu et  al. 2024). The presence of these antibodies is thought 
to pose a significant challenge, as they can bind to PEGylated 
therapeutics, potentially rendering them ineffective, trigger 
complement activation through multiple pathways, and pro-
mote clearance by phagocytic cells (Chen et  al. 2021; Fu 
et  al. 2024; Simberg and Moghimi 2024). These concerns 
have led to intense debate on the future viability of 
PEGylation, with some questioning whether the technology 
may become obsolete, particularly as anti-PEG antibodies 
become more prevalent. Here, we list these concerns and 
propose concerted strategies and a roadmap for moving the 
field forward.

2.  Main

2.1.  Emerging concerns and challenges

2.1.1.  Hypersensitivity reactions
Infusion of PEGylated medicines in some individuals triggers 
acute allergic reactions with mucocutaneous (e.g., skin flush-
ing or rash, urticaria), cardio-pulmonary (e.g., chest tightness, 
hypotension, bronchospasm, dyspnea, tachycardia, back pain, 
wheezing, angioedema), autonomic (e.g., dizziness, nausea, 
vomiting, sweating) and neuro-psychosomatic manifestations 
(Szebeni et  al. 2018; Moghimi et  al. 2023). These reactions 
evolve within minutes of infusion and not initiated or medi-
ated by preexisting IgE antibodies. Some individuals may 
also experience delayed onset of symptoms, which could be 
related to cytokine release storm, but not investigated in 
detail. The aforementioned infusion reactions are not unique 
to PEGylated medicines and shared with non-PEGylated 
nanomedicines and therapeutic monoclonal antibodies 
(Szebeni et  al. 2018; Moghimi 2018). There are suggestions 
that uncontrolled complement activation by PEGylated med-
icines (as well as non-PEGylated nanomedicines) and partic-
ularly the liberation of anaphylatoxins C3a and C5a are a 
causative factor (Szebeni et  al. 2018). Recent studies in rats 
have also indicated that complement opsonization could be 
another causative factor (Li et  al. 2024a), triggering adverse 
reactions, perhaps, through complement receptor-mediated 
pro-inflammatory signaling pathways. Available evidence 
from the porcine model strongly supports an effector role 
for pulmonary intravascular macrophages (PIMs) in hypersen-
sitivity reactions to PEGylated medicines regardless of com-
plement activation (Wibroe et  al. 2017; reviewed recently, 
Moghimi et al. 2023). PIMs are absent in the lungs of humans 
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and other commonly used laboratory animals (mice, rats, 
rabbits, dogs), but induced PIMs in rats and humans have 
been reported under certain pathological conditions of the 
liver and lungs (Moghimi 2018). Thus, what remains to be 
unraveled is the role of other macrophages in contact with 
blood (e.g., Kupffer cells and splenic marginal zone and 
red-pulp macrophages), neutrophils, monocytes, dendritic 
cells, mast cells, platelets and possible interplay between 
some immune cells in human infusion related reactions 
(reviewed by Moghimi et al. 2023). Notwithstanding, anti-PEG 
antibodies could play important roles in triggering adverse 
reactions through Fc- and/or complement-receptor (e.g., by 
promoting C3 opsonization) signaling processes (Chen et  al. 
2023; Li et  al. 2024a). Regardless of underlying mechanisms, 
in clinical practice and in most cases, the incidence and 
severity of hypersensitivity reactions by PEGylated medicines 
(e.g., Oncaspar, Onivyde, Onpattro, Palynziq, PEGylated lipo-
somal doxorubicin products) is reduced with universal pre-
medication with a cocktail of corticosteroids, H2 blockers 
and acetaminophen as well as by slowing down the infu-
sion/injection rate (Szebeni et  al. 2018; Moghimi et  al. 2023). 
However, there are examples where universal premedication 
prior to PEG-medicine administration (e.g., PEGylated aspara-
ginase) did not alter incidence or severity of hypersensitivity 
reactions (Menig et  al. 2024). Followings are examples of 
PEGylated medicines withdrawn from the market or stopped 
at late-stage clinical trials due to safety concern: Omontys 
(peginesatide), Krystexxa (pegloticase) and Revolixys 
(pegnivacogin).

2.1.2.  Prescreening for anti-PEG antibodies
As the prevalence of anti-PEG antibodies increases and con-
sidering the incidence of hypersensitivity reactions to 
PEGylated medicine, there is growing discussion about 
whether patients should be prescreened for these antibodies 
before receiving PEGylated therapies (Simberg and Moghimi 
2024). Determining a ‘safe’ concentration of anti-PEG antibod-
ies for different classes of PEGylated drugs and nanomedi-
cines is an area requiring further research and clinical 
validation.

2.1.3.  Differences in vaccine-induced anti-PEG antibodies
Interestingly, the Pfizer-BioNTech Comirnaty® vaccine induces 
fewer anti-PEG antibodies compared with the Moderna 
Spikevax® (Carreño et  al. 2022; Ju et  al. 2022). The reasons for 
this difference are not yet fully understood but could be 
related to differences in stability, dose, nanoparticle size dis-
tribution and surface characteristics. Indeed, these parame-
ters modulate nanoparticle drainage into the local lymphatic 
system and uptake by lymph node phagocytic cells (Moghimi 
et  al. 2006). However, it raises important questions about the 
design of LNP mRNA therapies, including their stability in 
biological fluids and how they can be optimized to minimize 
the induction of anti-PEG antibodies. Of note, the affinity of 
humanized anti-PEG IgG and IgM for Comirnaty is lower than 
for PEGylated liposomal products such as Doxil, which could 
be related to differences in surface PEG density and/or con-
formation (Bavli et  al. 2023).

2.1.4.  Impact on other PEGylated medicines
There is concern that the mRNA vaccines based on PEGylated 
LNPs might impact the efficacy or safety of other PEGylated 
medicines in patients, particularly if they lead to the genera-
tion of cross-reactive anti-PEG antibodies (Chen et  al. 2021; 
Simberg and Moghimi 2024). This interaction needs to be 
carefully studied to ensure that the benefits of PEGylation are 
not compromised. For instance, PEGylated liposomes, partic-
ularly those with a low surface PEG density are susceptible to 
destabilization by anti-PEG antibodies through complement 
activation and insertion of the membrane attack complex 
into the liposome bilayer (Chen et  al. 2020, 2024).

2.2.  Moving forward: balancing innovation with safety

As the pharmaceutical industry continues to innovate, it is 
essential to balance the benefits of PEGylation with the 
potential risks. While PEGylation has undoubtedly revolution-
ized drug delivery, particularly in the field of nanomedicine, 
the aforementioned concerns about immune responses and 
the emergence of anti-PEG antibodies cannot be ignored. 
With the increasing recognition of anti-PEG antibodies and 
their potential to induce immune responses, it becomes cru-
cial to develop strategies that can foresee and prevent 
adverse effects in patients.

2.2.1.  Standardization of anti-PEG assays
As anti-PEG antibodies become a significant concern, the 
need for standardized assays to detect and quantify these 
antibodies is becoming increasingly important. Currently, 
there is a lack of uniformity in how anti-PEG antibodies are 
measured across different studies and clinical trials. This 
inconsistency makes it challenging to compare results and 
draw definitive conclusions about the prevalence and impact 
of anti-PEG antibodies. The standardization of anti-PEG assays 
would involve the development of validated protocols that 
can be universally adopted across laboratories (Chen et  al. 
2016, 2021; Li et  al. 2024b). These assays should be sensitive, 
specific, and capable of distinguishing between different 
classes of anti-PEG antibodies, such as IgG, IgM and IgE. The 
inclusion of reference anti-PEG antibody standards can help 
compare between different laboratories and studies. 
Additionally, standardized assays would allow for more accu-
rate screening of patients before administering PEGylated 
therapies, ensuring that those at risk of adverse reactions can 
be identified and managed appropriately. The pharmaceutical 
industry, in collaboration with regulatory bodies, must priori-
tize the development and implementation of these standard-
ized assays. Doing so will not only improve patient safety but 
also facilitate the continued use of PEGylation in drug 
delivery.

2.2.2.  Anti-PEG antibody specificity
Available information on the mode of anti-PEG antibody 
binding to PEG is limited to and derived from the crystal 
structures of anti-PEG antibody Fab fragments (Huckaby et  al. 
2020). This has identified an open ring-like structure in the 
Fab paratope that binds 16 monomer subunits in flexible PEG 
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chains. Understanding this mechanism (i.e. the extent of 
chain flexibility-rigidity) can potentially impact the PEGylation 
strategy and provide means for the development of safer 
PEGs (for instance by increasing macromolecular rigidity 
through PEG branching). However, not much is known about 
the mode of anti-PEG antibody binding to PEGylated surfaces 
composed of different PEG molecular weights and densities 
in full blood or lymph to account for the role of nonspecific 
protein binding/intercalation. This is important, particularly 
when differentiating between low versus high-affinity 
anti-PEG antibodies and consequences thereof, such as com-
plement activation and interaction with Fc receptors. 
Nonspecific protein binding to PEGylated nanoparticles could 
either mask anti-PEG antibody binding or even promote the 
binding of such antibodies by influencing PEG conformation 
(Moghimi et  al. 2023). Therefore, future work should focus in 
purifying anti-PEG antibodies, distinguishing between low- 
and high-affinity anti-PEG antibodies and assessing their 
mode of binding to PEGylated proteins and nanoparticles in 
the blood. This is important, since there are major differences 
between PEGylated proteins/enzymes (they usually carry 
PEGs >10,000 Da and the number of attached PEG molecules 
vary from one to tens, depending on the protein type) versus 
PEGylated nanoparticles (they usually display PEGs of 2000–
5000 Da with variable surface density, depending on nanopar-
ticle type) (Gao et  al. 2024). Thus, differences in PEG sizes, 
hydration and conformational cloud could modulate the 
mode and the extent of anti-PEG antibody binding and 
responses thereof.

2.2.3.  Strategies to predict PEG-associated toxicities
Predicting and mitigating PEG-associated toxicities is an area 
of growing interest within the pharmaceutical industry. One 
approach is the development of predictive assays that simu-
late human immune responses to PEGylated drugs in vitro. 
By understanding how PEGylated nanoparticles or drugs 
interact with human immune cells and proteins, researchers 
can identify potential risks before clinical trials begin. 
Additionally, advancements in computational modeling and 
machine learning can be leveraged to predict how variations 
in PEG structure, size and density might influence immune 
responses.

Toward such efforts, PEG-pairing of nanoparticles (surface 
functionalization with a combination of low and high molec-
ular weight PEGs) dramatically reduces complement activa-
tion by altering PEG conformational attributes, which 
minimize statistical protein binding/intercalation (Pannuzzo 
et  al. 2020). However, the impact of PEG-pairing on anti-PEG 
antibody binding has not been investigated. Notwithstanding, 
a recent study has shown that nanoparticle surface coverage 
with high-density brush-shaped PEG conjugates can reduce 
anti-PEG antibody binding (Xiao et  al. 2025). In contrast to 
the abovementioned surface engineering initiatives, one 
study demonstrated the effectiveness of intravenous free PEG 
40k Da administration (50 mg/kg) as a prophylaxis against 
anaphylaxis induced by PEGylated liposome in swine (Shen 
et  al. 2024). Interestingly, free PEG dosing itself did not 
induce hypersensitivity, presumably due to its blood 

concentration levels being far below concentrations needed 
to over-activate complement (Moghimi et  al. 2006; Hamad 
et  al. 2008). However, the desensitization-induced mecha-
nism(s) of free PEG administration is unclear, but this could 
be related to the modulation of Fcγ receptor signaling by 
PEG-antibody complexes in porcine pulmonary intravascular 
macrophages (Moghimi 2018; Moghimi et  al. 2023). Of note, 
IgE antibodies against PEG have casually been implicated in 
rare hypersensitivity reactions to PEG imaging agents and 
lipid nanoparticle (LNP) mRNA vaccines (Zhou et  al. 2023). 
Administration of free PEG molecules as a prophylaxis mea-
sure, however, could be detrimental in individuals with pre-
existing anti-PEG IgE antibodies.

While research has predominantly focused on antibody- 
and complement-mediated responses, it is instrumental to 
address complement- and immunoglobulin-independent 
mechanisms by which PEGylated particles interact with cell 
receptors such as scavenger, Toll-like and lipoprotein recep-
tors (Soenen et  al. 2014; Asoudeh et  al. 2024). For example, 
many PEGylated nanoparticles interact with apolipoproteins 
and lipoproteins and these associations could play important 
roles in cell uptake through lipoprotein receptors and modu-
late intracellular processes leading to desirable or undesirable 
effects (Li et  al. 2022; Liu et  al. 2023). Understanding the 
mode of interaction could evolve in developing PEG architec-
tures or derivatives to modulate nanomedicine pharmacoki-
netics and improve broader safety. Another important issue 
that has rarely received attention is the intracellular fate of 
PEG (Moghimi and Szebeni 2003). Considering the notional 
free energy of hydrogen binding (Lloyd 1998), it is unlikely 
for PEGylated molecules to escape phagolysosomes. Thus, 
gradual PEG accumulation in lysosomes could alter organelle 
density, modify or modulate lysosomal transporters and 
activity of lysosomal enzymes and trigger untoward responses.

2.2.4.  The lesser evil: do we need alternatives to PEG?
As the debate around PEGylation intensifies, a critical ques-
tion emerges: do we genuinely need alternatives to PEG? 
Given the growing concerns about anti-PEG antibodies and 
immune reactions, some researchers argue for the develop-
ment of new polymers that could replace PEG. However, the 
risks associated with the widespread presence of anti-PEG 
antibodies in the population are not yet fully understood. 
Although PEG antibodies are widespread, they are likely low 
affinity and present at low concentrations in most individuals 
(Chen et  al. 2021). Similar to anti-PEG antibodies, anti-dextran 
antibodies are also prevalent in most individuals and have 
been associated with hypersensitivity reactions to intrave-
nous iron therapy of dextran-stabilized iron(III)-oxyhydroxide/
oxide nanoparticles (Fleming et  al. 1992; Wang et  al. 2015). 
While debate continues, recent studies (Vu et  al. 2019; Li 
et  al. 2024) suggest that the presence of natural antibodies 
recognizing foreign surfaces is a broader issue at least with 
respect to complement activation and opsonization, not 
unique to PEG or dextran.

Thus, is replacing PEG might be a case of ‘the lesser evil’? 
PEG has established an impressive track record in terms of 
manufacturing, characterization, and chemistry. It has taken 
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decades for PEG to become a trusted pharmaceutical excipi-
ent, with regulatory bodies like the US Food and Drug 
Administration being well-versed in its toxicology and phar-
macology profiles. Replacing PEG with a new polymer would 
not only be an uphill battle but could also introduce unfore-
seen challenges that could take decades to fully understand 
and mitigate. Other polymers are also likely to induce 
polymer-specific antibodies in similar applications in which 
PEG displays immunogenicity (as in the case of dextran). 
Moreover, alternatives may not be suitable for all applica-
tions. PEG’s unique properties, such as its ability to enhance 
drug solubility and extend circulation time, are not easily 
replicated. While it is important to explore and innovate, 
abandoning PEG entirely could be counterproductive. Instead, 
optimizing PEGylation (e.g. as in PEG-pairing initiatives and 
functionalization with high-density brush-shaped PEG conju-
gates) to minimize its drawbacks might be a more pragmatic 
approach, balancing the need for innovation with the reali-
ties of regulatory and clinical practice. Thus, rather than 
abandoning PEG, the focus should be on looking for further 
scientific evidence on the role of anti-PEG antibodies in 
hypersensitivity reactions.

2.2.5.  What alternatives to PEG are available?
Exploring alternatives, such as tagging drug carriers (or pro-
teins) to albumin, Fc fragments, polysarcosine, polyglycerol 
derivatives, polyvinylpyrrolidone and polyoxazolines has been 
proposed (Yang et  al. 2016; Hoang Thi et  al. 2020; Berger 
et  al. 2023; Gao et  al. 2024; Kang et  al. 2024; Lorson et  al. 
2018). Likewise, ‘zwitterionic polymers’ (polymers having a 
pair of oppositely charged groups in their repeating units) 
also offer a strong hydration effect through ionic solvation 
and drawing attention as an alternative to PEGylation to min-
imize protein adsorption and enhance protein stability 
(Estephan et  al. 2011). However, not all these alternatives 
may be suitable for all applications, particularly in the case of 
nanoparticles, which have large surface areas and specific 
requirements that PEG has successfully met. Other complica-
tions include grafting chemistries, accumulation in cells and 
even immunogenicity upon frequent administration. 
Furthermore, species difference in immune responses must 
be considered and responses in preclinical animal models 
may not correspond to and reflect human responses (dis-
cussed in section 2.2.6).

Notwithstanding, among the aforementioned PEG alterna-
tives, polyoxazolines are attracting increasing attention as an 
alternative to PEGylation in pharmaceutical development 
(Bludau et  al. 2017; Lorson et  al. 2018; Golba et  al. 2025). A 
potential advantage of polyoxazolines over PEG and other 
alternatives is the vast diversity of monomers that can be 
employed during polymerization, allowing for a wide varia-
tion of polymer properties (Mahand et al. 2022). Polyoxazolines 
are synthesized by living cationic ring-opening polymeriza-
tion, which provides direct control of polymer chain length 
and low dispersity (Đ = Mw/Mn ~ 1.05 to 1.3). Polyoxazolines 
exhibit thermal stability, do not undergo peroxidation and 
are miscible in a wide variety of solvents. The controlled pro-
cess allows for the quantitative introduction of terminal 

functional groups and various pendant side groups via func-
tional monomers and polymer analog reactions, making the 
manufacturing of end-functionalised end-functionalized and 
telechelic polymers technically facile. Additionally, block, gra-
dient, and random copolymerization of different 2-oxazoline 
monomers are possible. As to their biological evaluation, sub-
stituting PEG-lipid with poly(2-ethyl-2-oxazoline)-lipid in LNPs 
has been reported to decrease IgM formation against the 
respective polymer and improve gene expression in the liver 
after repeated dosing in mice (Sanchez et  al. 2024). 
Poly(2-methyl-2-oxazoline), a polymer more hydrophilic than 
both PEG and poly(2-ethyl-2-oxazoline), was also employed in 
polyplexes for nucleic acids delivery (He et  al. 2015; 
Yamaleyeva et  al. 2023) and has shown considerably less 
plasma protein binding than similar PEG-based construct. 
Today, some poly(2-ethyl-2-oxazoline)-conjugated drugs are 
commercially being developed (Nasdaq.com 2024).

There are also developments with block copolymers of 
poly(2-oxazolines) and more recently poly(2-oxazolines)-pol
y(2-oxazines) have emerged as a novel polymeric micelle 
platform for drug delivery, uniquely capable of carrying high 
loads of water-insoluble drugs with improved safety (He et  al. 
2016; Lübtow et  al. 2017; Wan et  al. 2018; Alves et  al. 2019; 
Hwang et  al. 2020, 2021; Zahoranová and Luxenhofer 2021; 
Lim et  al. 2023). This capability enhances the solubility, stabil-
ity, efficacy, and safety of multiple drugs, allowing for 10 to 
100 times higher drug loads than other solubilization meth-
ods, with drug loadings often reaching 40 to 50% by weight 
(Alves et  al. 2019).

Of note, polyvinylpyrrolidone was used as an effective 
plasma substitute given to >500,000 human subjects with 
excellent safety records over years (Hecht et  al. 1943; Ravin 
et  al. 1952). Thus, pyrrolidonation could potentially serve as a 
prominent alternative strategy to PEGylation. In support of 
this notion, pyrrolidonation of poly(amido amine) dendrimers 
has, at least, overcome complement activation in human 
plasma (Wu et  al. 2021).

2.2.6.  Relevance of the toxicities observed in animal 
models
Animal models have been instrumental in understanding the 
safety and efficacy of PEGylated and broader non-biological 
complex drugs. However, the relevance of toxicities observed 
in these models to human patients is a topic of ongoing 
debate (Moghimi 2018; Moghimi and Simberg 2018; Li et  al. 
2021). While animal studies can provide valuable insights, 
they often do not fully replicate the complexities of the 
human immune system. For instance, the prevalence and 
behavior of anti-PEG antibodies can differ significantly 
between species, leading to potential discrepancies in how 
PEGylated drugs are tolerated.

Furthermore, there are species differences in the extent 
and pathways of complement activation by PEGylated (and 
non-PEGylated) nanomedicines and associated responses 
(Tavano et  al. 2018; Li et  al. 2021, 2024a; Moghimi and 
Simberg 2022). A notable example is the difference in com-
plement activation and complement opsonization of 
polyoxazoline-coated nanoparticles between mice, pigs and 
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humans (Tavano et  al. 2018, 2025). Polyoxazolinated nanopar-
ticles overcome complement activation in mice sera, where 
the lack of C3 opsonization contributes to their poor recog-
nition and uptake by primary murine macrophages (Tavano 
et  al. 2018). This is in line with the long-circulating properties 
of intravenously injected polyoxazoline-coated/grafted 
nanoparticles in mice (Zalipsky et  al. 1996; Bludau et  al. 
2017). However, in both human and porcine sera polyoxazo-
linated particles robustly trigger complement activation and 
this promotes their uptake by primary human and porcine 
macrophages, respectively (Tavano et  al. 2018, 2025). 
Furthermore, the porcine pattern-recognition molecule ficolin 
2, through its S2 binding site recognizes polyoxazolines and 
this directly promotes nanoparticle uptake exclusively by 
monocytes. In human sera, ficolin opsonization of polyoxazo-
linated nanoparticles is isoform-dependent, showing 
inter-individual variability (Tavano et  al. 2025). These observa-
tions suggest that unlike murine, polyoxazolinated nanoparti-
cles may not exhibit prolonged circulation times in swine 
and human subjects. Of note, in a different study drug-loaded 
poly(2-oxazoline)-poly(2-oxazine) micelles did not trigger 
complement activation in citrated human plasma (He et  al. 
2016). The reason for this is not clear, but it may be related 
to the ‘soft’ nature of these micelles or their small size, or to 
the plasma preparation and handling (including the anticoag-
ulant type) (Moghimi and Simberg 2022).

Other examples include pigs and sheep. Unlike normal 
human lungs, pigs and sheep have intravascular pulmonary 
macrophages that rapidly respond to many types of intrave-
nously injected PEGylated and non-PEGylated nanoparticles 
by releasing proinflammatory mediators that cause vasocon-
striction, bronchoconstriction and pulmonary hypertension 
(Moghimi and Simberg 2018).

Moreover, the doses and formulations used in animal 
studies may not always correlate with those used in human 
clinical trials. This raises questions about the translatability of 
animal data to real-world clinical outcomes. As such, while 
animal models remain a critical component of preclinical 
testing, their limitations must be acknowledged, and their 
findings must be interpreted with caution. To bridge this gap, 
there is a need for more sophisticated models that better 
mimic human physiology and immune responses. Additionally, 
integrating data from animal studies with human cell-based 
assays and clinical data can provide a more comprehensive 
understanding of the potential risks associated with 
PEGylation.

3.  Conclusions

PEGylation has played a pivotal role in advancing protein 
drug products and drug delivery systems, offering numerous 
benefits that have improved patient outcomes. However, as 
the understanding of its limitations grows, the pharmaceuti-
cal industry must address these challenges to ensure the 
continued success and safety of PEGylated drugs. Longitudinal 
studies that monitor patients for signs of immune sensitiza-
tion to PEG over time, however, can provide valuable insights 
into the long-term safety of PEGylated therapies. These 

strategies, combined with ongoing research into the mecha-
nisms of PEG-associated toxicities, will be essential in ensur-
ing the safe and effective use of PEG in future drug 
formulations. Through ongoing innovations in immunog-
enomics, anti-PEG antibody assays/diagnostics, machine 
learning, and artificial intelligence-powered approaches in 
materials design and engineering, as well as exploiting 
orthogonal effects of currently available complement inhibi-
tors, it is possible to overcome these hurdles and continue to 
harness the full potential of PEGylation technology in the 
future of medicine. These approaches could introduce and 
implement better risk assessment strategies in treatment and 
patient selection and pave the path toward stratified thera-
pies with PEGylated medicines.
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